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1 Review

We start by reviewing a couple basic notions we will need later.

Definition 1 (Langlands dual). Let G be a reductive group over a field k with
torus T and root system (X•(T ), X•(T ), {α}, {α∨}). The Langlands dual of
G over k, denoted G∨

k , or simply G∨ when k is clear, is a reductive group (un-
der the Chevalley correspondence) with root system (X•(T ), X

•(T ), {α∨}, {α})
(swapping roots and coroots).

Definition 2 (perverse sheaf). We will not define perverse sheaves in detail.
In essence, a “perverse sheaf” on a variety X is some complex of sheaves that
lives inside an abelian category Perv(X) ⊂ Db

c(X). We will not define Perv(X)
(other than as some mumbo-jumbo “heart of the perverse t-structure”).

Definition 3 (IC sheaf). An IC-sheaf is a specific perverse sheaf. We will not
define what it is!

We can also consider perverse sheaves in the heart of the perverse t-structure
of G-equivariant (constructible) sheaves when G acts on X. In this context, we
write PervG(X) to denote this abelian category. Importantly, perverse sheaves
admit all the natural functors sheaves admit, but as derived functors. In par-
ticular, we will be looking at the stalks of perverse sheaves at points, which will
be a complex of vector spaces, rather than a single vector space.

2 Geometric Satake Correspondence

Today, we will go over all of the necessary ingredients in the Geometric Satake
Correspondence that we will need next time.

Theorem 1 (Geometric Satake Correspondence). Let G be a complex reductive
group, k be a Noetherian ring of finite global dimension, and denote G∨

k as the
Langlands dual of G over k. We define the Satake category of G over k to be

SatG,k := PervL+G(GrG, k)
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Then, we have the following commutative diagramme of symmetric monoidal
categories over k-modules:

SatG,k Repk(G
∨)

Modk

∼=

H∗(−) forget

Statement due to [Fan]. H∗(−) is hypercohomology, which we will not discuss.
This offers a brand-new (to us) construction of the Langlands dual group that
has nothing to do with root systems. Logan will be able to offer more justi-
fication for this theorem (or possibly even a sketch of a proof) next time. A
posteriori, this equivalence can be restated as the following claim: SatG,k is a
Tannakian category equivalent to the category of representations of G∨ over k.
The proof of the Geometric Satake Correspondence uses the Tannakian formal-
ism to show that SatG,k is a Tannakian category, and in particular, dual to G∨.
We will outline a sketch of this process in this talk, and Logan will (probably)
fill in the details next time.

3 Stratification of the Affine Grassmannian

For this section, we fix a complex reductive group G and write GrG as its affine
Grassmannian. We write K = C((t)) and O = C[[t]]. We start by describing
several decompositions G, following the Bruhat decomposition in the classical
setting:

Theorem 2 ([Fan] 2.4). We have the following decompositions:

1. G(C) = BWB =
⊔

w∈W B(C)wB(C) (Bruhat)

2. G(K) = IW affI =
⊔

w∈Waff I(K)wI(K) (Iwahori-Bruhat)

3. G(K) = G(O)X•(T )
+G(O) =

⊔
λ∈X•(T )+ G(O)tλG(O) (Cartan)

4. G(K) = G(C[t−1])X•(T )
+G(O) =

⊔
λ∈X•(T )+ G(C[t−1])tλG(O) (Birkhoff)

5. G(K) = B(K)G(O) (Iwasawa)

These decompositions relate directly to the decomposition Luna gave in her
talk:

GLn(K) =
⊔

GLn(O)tγ GLn(O),

where γ is a dominant cocharacter of the torus. Under the action of the Weyl
group, which is Sn in this case, every cocharacter of the torus is in an orbit of a
dominant cocharacter: a cocharacter is a map Gm → T , ie. a map Gm → Gn

m,
ie. a map Z → Zn, a choice of n integers. Up to symmetry, we can make the
first integer the largest, which makes γ dominant.
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Again following the classical case, we consider Schubert cells in LG/L+G,
just as we do for left B-orbits in G/B. For g ∈ LG, we write [g] to denote
its L+G-orbit in GrG = LG/L+G. Using our Cartan decomposition, we can
write G(K) = G(O)X•(T )

+G(O), and we can use this to build a decomposition
(which we will shortly show is a stratification) of GrG. Let λ ∈ X•(T )

+ and write
Grλ to denote the L+G-orbit containing [tλ]. We can see that GrG = ⊔Grλ (ie.
we recover every L+G orbit) by the Birkhoff decomposition, but it is not clear
that these pieces Grλ form a stratification. We will show this now.

Proposition 1 ([Fan] 2.5). We have the following:

1. Grλ = Gr≤λ :=
⊔

µ≤λ,µ∈X•(T )+ Grµ

2. Grλ is an affine bundle over the partial flag manifold G/Pλ of dim(Grλ) =
⟨2ρ, λ⟩ (where Pλ is the parabolic subgroup of G spanned by the negative
root perpendicular to λ)

Thus, {Grλ} in fact stratify GrG. This is where we get our first inkling of a
connection to G∨: recall that, by definition, X•(T ) = X•(T∨). So

GrG =
⊔

λ∈X•(T )+

Grλ =
⊔

λ∈X•(T∨)+

Grλ

So in a certain sense, the affine Grassmannian of G is controlled by the repre-
sentations of G∨! There is a lot of technical machinery needed to establish the
details, but at a high level, we have perverse sheaves called the “IC sheaves” and
when we take the stalks of IC sheaves at any point [λ], we have a connection to
representations of G∨. Recall that the stalk of a perverse sheaf is a complex of
vector spaces. If we denote n(V ) =

∑
dim(Vi) when V is a complex of vector

spaces, then we find that

n(IC[λ]) = dimG∨
λ

where the right-hand side denotes the dimension of the λ-weight space corre-
sponding to the dominant weight λ of G∨. Let’s look at an example.

Example 1. Let G = SL2 over C. The affine Grassmannian of SL2 over C can
be identified with A0 ⊔ A2 ⊔ . . . , as a variety. A2i corresponds to the highest-
weight representation of PGL2 with highest weight 2i. So we have a bijection
between cells of GrSL2

and irreps of PGL2!

4 Tannakian Formalism

Definition 4 (Tannakian category). Let K be a field and C an abelian rigid
tensor category such that End(1) ∼= K. We say C is Tannakian over K, or
Tannakian when K is clear, if there is some field extension L of K such that
there is some K-linear, exact, faithful tensor functor F : C → L-Vect. We call
F the fibre functor of C.
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Tannakian categories are a natural extension of the category of representations
of a group G over a field K. For every field K and every algebraic group G,
RepK(G) is a Tannakian category, with F the forgetful functor to K-vector
spaces. When L = K, we say C is neutral. Thus, every RepK(G) is a neutral
Tannakian category. Similarly, RepL(G) is Tannakian over F for any L/F in
the same way, but not neutral. Tannakian categories are one half of Tannaka-
Krein Duality: the duality between G and RepK(G). This duality is integral
to the proof of Geometric Satake: we first prove that a certain category is
Tannakian and satisfies the conditions for Tannaka-Krein duality, and thus, it
must be the category RepK(H) for some group H. Then, we show that H is in
fact G∨, the Langlands dual of G.

Tannaka-Krein duality was built in two parts: Tannaka’s Reconstruction
Theorem and Krein’s Theorem. Tannaka’s Reconstruction Theorem allows us
to extract G from Rep(G), and Krein’s Theorem gives sufficient conditions for a
Tannakian category to be Rep(G) for some G. These two pieces together allow
us to prove that the Satake category of G over GrG is equivalent to Repk(G

∨).
So let us first look at Tannaka’s Reconstruction Theorem.

Theorem 3 (Tannaka’s Reconstruction Theorem [Pie] 2.11). Let C be a neutral
Tannakian category over k with fibre functor F . Then,

1. Aut⊗(F ) is represented by an algebraic group G as a functor of k-algebras

2. C → Repk(G) given by F is an equivalence of tensor categories

The full statement for potentially non-neutral Tannakian categories requires
more technology such as gerbes. The following theorem is incorrect. It was
given as written in the talk, but as written it is clearly incorrect. A corrected
statement can be found in Milne-Deligne’s notes, but for posterity, the notes for
the talk have not been modified.

Theorem 4 (Krein’s Theorem). Let D be a category of finite-dimensional vector
spaces (ie. a subcategory of Vectk), under the tensor product. If the following
conditions hold:

1. there is some I ∈ D with I ⊗A ∼= A

2. every object A ∈ D is a sum of “minimal objects”

3. for any two minimal objects V,W , Hom(V,W ) is either one-dimensional
or zero

then D is a Tannakian category equivalent to Repk(G) where G is the group of
representations of D.

4.1 Tannakian Reconstruction

We will now describe Tannakian reconstruction. We start with some observa-
tions on module categories:
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Theorem 5. Let R be a k-algebra. Then F : R-Mod → k-Mod is the forgetful
functor, and R can be identified with the opposite ring of End(F ).

Theorem 6. Let A be an abelian category and P ∈ A. Then Hom(P,−) :
A → End(P )op-Mod is an equivalence if and only if P is a compact projective
generator.

For simplicity we will only consider the case k is a field. Let D be a rigid abelian
symmetric monoidal category and F : D → k-Mod an exact faithful monoidal
functor. Since the category k-Mod is only finite-dimensional vector spaces, it
is impossible to find a single generator. So instead, consider X ∈ D and let
⟨X⟩ be the full subcategory of subquotients of X⊕n. If FX : ⟨X⟩ → k-Mod
is representable, then it will be the forgetful functor a module category by the
previous theorems. So we will construct some PX ∈ ⟨X⟩ a compact projective
generator. The following section is copied from [Fan] (mostly because I don’t
understand it well enough to rewrite it).

Let C = ⟨X⟩. Consider functor category HomCat (C,Modk), with typical ob-
jects constant functor V for V ∈ Modk and Y ∈ C via the Yoneda lemma. Define
Hom(V, Y )(Z) = HomModk

(V,HomC(Y,Z)) , Z ∈ C, which is representable by
choosing a basis. Similarly we can define a tensor product: define

PX =
⋂(

Hom(F (X), X) ∩ ker
(
Hom

(
F
(
X⊕n

)
, X⊕n

)
→ Hom

(
F (Y ), X⊕n/Y

)))
,

where we intersect over {n ≥ 0, Y ⊂ X⊕n} and Hom(F(X),X) is diagonally
embeded in Hom (F (X⊕n) , X⊕n). We apply F and calculate: AX := F (PX)

=
⋂

n≥0,Y⊂X⊕n

(
End(F (X)) ∩ ker

(
End

(
F
(
X⊕n

))
→ Hom

(
F (Y ), F

(
X⊕n

)
/F (Y )

)))
=

{
A ∈ End(F (X)) | ∀Y ⊂ F

(
X⊕n

)
, A(F (Y )) ⊂ F (Y ) as subsets of F

(
X⊕n

)}
Observing F automatically factors as C → ModAX

→ Modk, we claim the first
arrow is an equivalence. Note there is a homomorphism AX → EndC (PX)

op
by

composition so that we can define an inverse by

PX ⊗AX
M := coker (PX ⊗AX ⊗M ⇒ PX ⊗M) ,

where the two arrows are two actions. We can easily check F (PX ⊗AX
−) = Id

and hence F is fully faithful. Lifting the first arrow of a presentation Am
X →

An
X → M → 0 in ModAX

, we get F is essentially surjective.
The second step takes a limit of the local realizations above. However, mod-

ule category over rings is not compatible with the limiting process we need,
because the category of limAi-modules is not equivalent to the colimit of cate-
gory of Ai-modules. To make the limit process correct, we should use comodules
instead of modules. So denote BX := A∨

X , dual operator induces an equivalence
ComodBX

= ModAX
. For ⟨X⟩ ⊂ ⟨X ′⟩, there is an arrow AX′ → AX by re-

striction, so BX → BX′ . We define B = lim−→BX and obtain the equivalence
C ∼= ComodB
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The third step adds monoidal structure into the picture. Now we’ve realized
C ∼= ComodB , a symmetric monoidal structure C × C → C is the same as
ComodB × ComodB → ComodB and then B × B → B. This makes B a
commutative algebra and bialgebra, or makes SpecB a monoidal scheme in the
opposite category. We want to look for criterions to make SpecB into a group
scheme. Recall when we’re constructing the dual of a vector space V with group
G-action, the inverse operation in G is needed to make G acting on the correct
side of V ∨, the dual of V. Actually the converse holds. If “dual” formally exists
inside the category (so called “Tannakian category”), we can obtain an antipode
map making B a Hopf algebra and G = SpecB a group scheme. Actually we
can make it even simpler: it suffices assume dual exists for “line bundle objects”
with respect to F. Assume that for any X ∈ C with dimk F (X) = 1, there exists
X∨ ∈ C and an isomorphism X ⊗X∨ ∼= 1.

To show G is a group scheme, we only need to show G(R) is a group for any
commutative algebra R over k. We first show the R-points act by isomorphism
on any representation X ∈ C. If dimk F (X) = 1, then R-point simultaneously
acts on X,X∨ and trivially on 1 . The isomorphism X ⊗ X∨ ∼= 1 in the
assumption the indicates the action on F (X)⊗k R is invertible. For general X,
we take the determinant Λdimk F (X)X to reduce to dimension 1 case. Glueing
finite dimensional representations together, G(R) acts on B by isomorphisms,
hence acts bijectively on Hom(B,R) = G(R). This implies G(R) is a group
since the action coincides with the natural group action.

(end copied section). There’s a lot that can be said about Tannaka-Krein
duality (it was even a proposed topic for our seminar next quarter). But with
these basics in place, we can start sketching the proof of the Geometric Satake
Correspondence. We will introduce further theory of Tannaka-Krein duality as
needed in the sketch.

5 Sketch of Proof

Now, let’s give a sketch of the proof of the Geometric Satake Correspondence.
This is significantly oversimplified and lacks many crucial details. The purpose
of this sketch is just to show how the different moving pieces fit together. Next
week, Logan will provide a better overview of the proof in more detail.

Proposition 2. The Satake category of G satisfies the following:

1. for A,B ∈ G, A ∗ B ∈ G (ie. the Satake category is closed under convo-
lution)

2. convolution makes SatG,k a symmetric monoidal category

3. the forgetful functor F : SatG,k → X•(T )-graded k-modules is monoidal

In fact, F is exact and faithful.
In particular, when k is of characteristic 0, we have the following nice facts.
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Lemma 1. Let ICλ be the IC-sheaf on Grλ. Then Hn(ICλ) ̸= 0 =⇒ n ≡
dimGrλ mod 2.

Lemma 2. The Satake category is semisimple.

With this functor F , we can show that (SatG,k, F ) has the structure of a Tan-
nakian category. In fact, SatG,k satisfies the criterion to apply Krein’s Theorem,
so is in fact a representation category. Now, all that remains is to show it is
the representation category of G∨. Let G̃ be a reductive group obtained from
Tannakian reconstruction so that SatG,k = Repk(G̃). We claim G̃ = G∨. Specif-

ically, we claim that G̃ is a split reductive group over k and that G and G̃ have
dual root systems (again over k). We can show this in several steps:

1. G̃ is a connected group scheme of finite type

2. T∨ ⊂ G̃ by the structure of the Satake category over X•(T∨) (we have a
functor F : SatG,k → Modk[X•(T )] ∼= Repk(T

∨) via the weight structure)

3. T∨ is maximal in G̃

4. the set of roots within G̃ and G∨ are identical

and from this, we see that in fact G̃ = G∨ (up to isogeny).
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