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1 Introduction

These notes consist of a gentle introduction to representation theory of finite
groups and quivers. The main goal of these notes is to introduce quivers, their
repesentations, and the classical McKay correspondence in an intuitive and sim-
ple way, building up from the basics. Contrary to every other resource to learn
quiver representations, we do not assume advanced background knowledge such
as homological algebra or algebraic geometry. Instead, we introduce quivers as a
natural object to consider, and examine the information we can gather through
their representations. McKay Correspondence arrives as a striking result in
quaternionic geometry that relates representations of quivers to the so-called
ADE Classification, a fundamental result at the core of many branches of
modern mathematics. ADE Classification appears in string theory, representa-
tion theory, and spherical/quaternionic geometry, and connection between these
fields through ADE Classification is incredible.

In Section [2] we introduce the so-called Linear Representation Theory of
Finite Groups. Finite groups are a well-behaved class of algebraic objects, and
their representations exhibit many nice properties that allow us to study the
structure of the groups. We will see that finite groups exhibit complete re-
ducibility over C, which means that every representation of a finite group can
be built from “simple pieces.”

In Section |3] we introcuce quivers and their representations. We will see
how quivers relate the the ADE Classification via so-called finite type quiv-
ers (mirroring complete reducibility in Section , and later on see the ADE
Classification again via McKay Correspondence.

1.1 Prerequisites

For most of these notes, knowledge of finite group theory (groups, subgroups,
normal subgroups, group homomorphisms) is assumed. Each section has its
own Prerequisites section that describes in more detail what is assumed for that
section.

Notation

If any of the following doesn’t make sense, don’t worry, it will be clear when it
is used.

1. All vector spaces are finite-dimensional complex vector spaces unless oth-
erwise specified.

2. We differentiate @ and Q: Q represents a quiver and () represents the
underlying graph of a quiver (this will make sense when quivers and graphs
are introduced).



2 Representations of Finite Groups

2.1 Prerequisites

1. finite group theory: subgroups, normal subgroups, group actions, orbit-
stabiliser, etc.

2. linear algebra: vector spaces, bases, subspaces, linear operators, inner
products, etc.

2.2 Representations

In representation theory, the central idea we study is a representation. Given a
finite group G, instead of studying the structure of G as a group, we can inves-
tigate how G acts on a vector space V. This allows us to examine information
about G, potentially without even knowing the full structure of G!

Definition 1 (representation). Let G be a finite group and V a vector space.
We define a representation of G on V to be a group homomorphism p: G —
GL(V). We call this a representation of G on V.

GL(V) denotes the general linear group on V, ie. the group of invertible linear
maps V' — V. This can also be notated Aut(V'), but we will use GL(V). If V
is a vector space with dimension n, this can also be written as GL,,(C).

Definition 2 (dimension). We say the dimension of a representation p : G —
GL(V) is dim(p) = dim(V).

Let us look at an example in depth. Let G = Cy = ({0,1},+), ie. the group
of integers with addition modulo 2 (aka the cyclic group of order 2, hence the
notation Cy). We can define a representation of G on the complex vector space
C by p: G — GL(C) by p(0) =1 and p(1) = —1. Then the dimension of p is 1,
as C is a 1-dimensional complex vector space.

We can verify this is in fact a representation of G: we need to show p :
G — GL(C) is a group homomorphism. Recall that a group homomorphism
f:A— B (with A and B groups) must satisfy

1. f(ea) = ep, where e, is the identity in A and ep is the identity in B

2. f(a-a') = f(a) x f(a’), where - is multiplication in A and X is multipli-
cation in B

So let us verify. We first want to figure out exactly what GL(C) is. Since
C is a 1-dimensional complex vector space, a linear map from C to C is a 1-
by-1 matrix, ie. a scalar. We defined the general linear group to be invertible
linear maps, which in this case is every map that is not the zero map. So
GL(C) = C*, where C* represents the group of nonzero complex numbers
under multiplication.



So, we have a map p : G — C* given by p(0) = 1 and p(1) = —1. In G, 0
is the identity, and in C*, 1 is the identity. So condition (1) is satisfied. And
p(0+1) = p(14+0) = p(1) = —1, which is the same as p(0) - p(1) =1- -1 =
p(1)-p(0) = —1. Further, p(14+1) = p(0) =1 =p(1)-p(1) = —=1-—1 = 1. So we
have shown that p(z+2") = p(2)p(2’) for any z, 2z’ € G. So p is a homomorphism
from G — GL(C), so p is in fact a representation of G.

Exercise 1. Prove that the map p : Cs — GL(C) given by p(n) = e*™*/3 is a
representation of Z /3 Z.

Definition 3 (trivial representation). Given a group G and a vector space V,
the map p : G — GL(V) given by p(g) = I (where I is the identity matriz) is a
representation of G, which we call the trivial representation.

Every group has a trivial representation on any vector space. Representations
on their own are interesting, but we can also combine them in two different
ways.

2.3 Sums of Representations

Let G be a finite group and Vi, V5 be vector spaces (of possibly different di-
mension), and p; : G — GL(V1), p2 : G — GL(V3) be two representations of G.
Then we can define the direct sum of p; and pa:

Definition 4 (direct sum of representations). In the above case, we define

p:G— GL(V, @ V3)
by p(g9) = p1(g) © p2(9)-

Recall that p;(g) and pa(g) are linear operators, and the direct sum of two linear
operators is given by (T @ U)(v,w) = (T'(v),U(w)). Let’s look at an example.
Let G = Cy and Vi = Vo = C?. We set p1 to be the trivial representation

(ie. p1(g) = B ﬂ for any g € G), and ps(g) is given by

O P ECI

Exercise 2. Verify that these are both representations of G.

Then, we have a representation p = p; @ p2 given by

100 0 10 0
1 0l.[1 0] lo1 0 0 10 =1 0] lo1 o0
p(o)_[o 1]@{0 1]_0010”’(1)_{0 1}@[0 1]_001
000 1 00 0

As of right now, it is not clear that the direct sum of representations is in fact
a representation. We will prove this.

= O O O



Proof. Let p; : G — GL(V}) and py : G — GL(V3) be representations of G. Let
p = p1 D p2. We will prove p is a representation of G.

First, p(@) = p1(e) @ pQ(e) = IV1 D IV2 = IV1®V2'

Second, recall from linear algebra that (A @ B)(C & D) = AC & BD if
A and C are n-by-n matrices and B and D are m-by-m matrices. We note
that p(g+¢') = (p1(g+ ') ® p2(g + ¢')). But p1, pa are representations of G,
so p1(g + ¢') = p1(g)p1(g’) and similar for p2. So p(g + g') = (p1(9)p1(g') ®
p2(9)p2(g") = (p1(9) ® p2(9)) - (p1(g") ® p2(g’)) by the fact we stated previously.

But this is precisely p(g)p(g'), so p(g +g') = p(9)p(g’).
So overall, we see p is in fact a representation of G. 0

The ability to combine representations is extremely important. We will see
shortly that any representation of G can be built as a sum of so-called “irre-
ducible” representations. This is an amazing fact in representation theory of
finite groups: every group has a (finite!) collection of representations that are
irreducible, and every representation is a (finite!) direct sum of these irreducible
representations.

2.4 Tensor Products of Representations

If direct sums are addition for vector spaces, tensor products are multiplication
for vector spaces. We know that C" @ C™ = C™"™ and similarly, C" @ C™ =
C™™ (where ® is the “tensor product”). Given a finite group G and two vector
spaces V1, Vo with representations p; : G — GL(V}) and ps : G — GL(13), we
have the “tensor product” p = p1 ® p2 : G — GL(V} ® Va). We will define the
tensor product as follows: C" @C™ is defined to be C"™, and for A a n-by-n
matrix and B a m-by-m matrix, we define

anB algB . alnB
A® B = annB  axB . a,B
alnlB anQB ‘e annB

as a block matrix. For example,

o el 1=l 13-

Exercise 3. Show that Tr(A® B) = Tr(A) Tr(B), where Tr represents the trace
of a matriz (the sum of the diagonal elements).

Exercise 4. Show that I, ® I,,, = I,,,, where I; represents the i-by-i identity
matrix.



We will state without proof that, just as in the direct sum case, (A ® B) - (C ®
D) = AC ® BD. With this fact, we see that p = p; ® p3 is a representation of
G on V1 ® V3, by repreating the proof in the previous section.

2.5 Irreducible Representations

Definition 5 (G-invariant subspace). Let p : G — GL(V) be a representation
of G, and W C V a subspace. We say W is G-invariant if for every g € G
andw € W, (p(g))(w) € W.

For any representation of G on a vector space V', the trivial subspace {0} C V/
is a G-invariant subspace.

Definition 6 (irreducible representation). Let V' be a representation of G. We
say V is 1rreducible if V' has no non-trivial G-invariant subspace.

Let’s look at some examples. Let G = Cs and p : G — GL(C?) be given
by p(0) = I and p(1) = —I. Is this irreducible? Let’s look. Consider the
subspace W C V given by W = span({(1,0)}). We claim W is a G-invariant
subspace of V. Let’s prove this. To prove this, we need to show that for any
w € W and g € G, we have (p(g))(w) € W. So pick some w € W. By the
construction of W, we can write w = (wq,0). Then pick g € G. If g = 0, we
have p(g) = I so (p(g9))(w) = w € W. Similarly, if g = 1, we have p(g) = —1I,
so (p(g9))(w) = —w € W. Thus, we have shown that for any w € W and any
g € G, we have (p(g))(w) € W. Thus, W is a nontrivial G-invariant subspace
of V, so V is not irreducible.

Definition 7 (decomposable representation). We say p a representation of G
is decomposable if p = p1 D pa for p1, p2 representations of G.

If there are no such pq, p2, we say p is indecomposable.

Theorem 1. Let G be a finite group and p : G — GL(V) a representation
of G. If W is a nontrivial G-invariant subspace of V', then we must have a
complement U C V' so that U is also G-invariant and W @ U = V.

For notation, we will write g - x or gz to represent (p(g))(x).

Proof. Let py : V.— W be the projection. Define p(x) : V — V = ﬁ Z g-

geG
po(g~tx). Since py is the identity on W, for any w € W, g - po(g~'w) =
g(g7'w) = w, since W is G-invariant so ¢g~'w € W and po(g~'w) = g~ 'w.
Thus, p(w) = w for any w € W. Thus, W Nkerp = {0}. Further, for v € V,
p(p(v)) = p(v), so v — p(v) € ker(p). Thus, we see that V =W @ ker p. So if we
can show that ker p is a G-invariant subspace of V', we will be done.

So now, let us show ker p is G-invariant. Pick h € G, v € ker p. Then



p(hv) |G| > 9-polg™ " (hw))

geG

—=h-ht ng po(g™" - (hv))

geG

|G| Z (h1 po((h™t - g)"tw)

geG

—1
|G| > g polg'v)
geG
= hp(v)
=0

Thus, ker p is G-invariant and we are done. O

The technique of defining p as “averaging over the group” is a very important
and powerful tool in representation theory to produce so-called “equivariant”
maps out of non-equivariant maps (a map is called G-equivariant if f(g-z) =
g f(z); po is not G-equivariant but p is). Note that this only works because
|G| is finite — this theorem is not true if G is not a finite group. This theorem
also admits two powerful corollaries:

Corollary 1. p is indecomposable if and only if V' is irreducible.

Corollary 2 (Maschke’s Theorem). Every representation of G is a sum of
irreducible representations.

With this new technology, let us go back to our example. Let U = span({(0,1)}).
By similar logic to before, U is also a G-invariant subspace of V. Further,
W @ U = V. Let us look at the matrices p(0), p(1):

p0 =y Y = e

-1 0
p(1) = [ 0 _1:| = [_1] ® [_1}
Let us define p; : G — GL(W) by p(0) = 1 and p(1) = —1, and p2 : G — GL(U)
by p(0) = 1 and p(1) = —1. By the previous computation, we see that p = p1PBps
as a representation on W o U = V.

Exercise 5. Prove that every 1-dimensional representation of a group G is
irreducible.

Thus, W and U are irreducible representations of G, and we’ve shown that
V breaks apart as a sum of irreducible representations. Maschke’s Theorem,
one of the most important in finite group representation theory, tells us that,
amagzingly, every representation of every finite group breaks down as a sum of
irreducible representations.



2.6 Characters

We now move to character theory. So far, we’ve seen powerful tools for decom-
posing representations into simpler building blocks. Now, we apply this theory
via characters in order to develop several powerful theorems on group structure.

Definition 8 (character). Let G be a finite group and p : G — GL(V) be
a representation. We define the character of p to be x : G — C given by
x(g) = Tr(p(g)), where Tr represents the trace of a matriz (the sum of the
diagonal elements).

Exercise 6. Show that x,(e) = dim(V') where p : G — GL(V).
Proposition 1. For any g,h € G, x(ghg™t) = x(h).

Proof. This is direct from the linear algebra fact that Tr(ABA™!) = Tr(B) for
any two n-by-n matrices A, B (set A = p(g), B = p(h)). O

A function f : G — C such that f(ghg~!) = f(h) is called a class function.
The above proposition can be equivalently stated as “all characters are class
functions.” We write x, to denote the character associated to the representation

p-

Proposition 2. Let p1, p2 be representations of G.

L. Xpr@p> = Xp1 T Xpo
2. Xpr@p2 = Xp1 Xpo
Proof. Exercise. (Hint: see Exercise [3)). O

Given G a group, we can take the collection of all class functions on G, which
we denote by CI(G). This can be thought of as a vector space, and its dimension
is precisely the number of conjugacy classes in G. To see this, note that a class
function is an arbitrary function that is constant on conjugacy classes, so a basis
of this space is given by the collection of functions that take the value 1 on a
specified conjugacy class and 0 otherwise. Further, we have an inner product
on this vector space that turns Cl(G) into a complex inner product space:

/ 1 /
(= > F9)F(9)

geqG

Theorem 2. Let Vi,...,V,, be all of the irreducible representations of G. Then
{X1,--+,Xn} @8 an orthonormal basis in Cl(G).

The equations (x;, x;) = 0 for i # j are called the orthogonality relations.

Corollary 3. The number of irreducible representations of G is the same as
the number of conjugacy classes of G.



This corollary is very powerful in allowing us to determine the structure of a
group. Finally, we have one more important theorem about the structure of
groups that can only be proven using characters:

Theorem 3. Let Vi,...,V, be all of the irreducible representations of G. Let
X1, - - Xn be the characters of these representations. Then (dim(V;))2+(dim(V2))%+
— 4 (dim(V,))? = |G

Let V be the “regular representation”: V = Cl¢! with a basis given by the
elements of G, and p(g)(h) = gh for g,h € G. Essentially, we have G acting
on itself. For example, if G = C5 (and we write the elements as {e,a} to avoid
confusion), we have V = C? with basis {e,a} and e- (cie + caa) = c1e + coa and
a-(c1e+ coa) = c1a + coe. This is the regular representation of Cy. (In the
language of group algebras, which is beyond the assumed prerequisites, this is
the natural action of G on C[G]).

Proof. Let V be the standard representation of G, and x its character. We use
without proof that x(e) = |G| and x(g) = 0 for g # e. From this fact, we note
that (x,x;) = dim(V;) by Exercise [l Thus, x = > dim(V;)x;, and

X(e) = dim(V) =G| = dim(Vi)xi(e) = > _(dim(V))*.

2.7 Finding Character Tables

With these powerful theorems, let’s look at an example of completely deter-
mining all representations of a group using character theory. Let G = Qg, the
quaternion group. This is a group presented by (i, j, k|i* = j? = k? = ijk), a
group of order 8. Without listing the elements of the group, we will find all of
the irreducible representations of this group using character theory.
First, we note that there are five conjugacy classes in G: (e), (ijk), (i, —i), (4, —J), (k, —k).

So there are 5 irreducible representations (including the trivial representation),
of degrees dy, ds, d3, d4, ds. For simplicity, we denote the trivial representation to
be the first representation, so d; = 1. Second, the order of the group is 8. Now,
we know d? +d3 +d3 +d3 +d2 = 8, which means d; = dy = d3 = dy = 1,d5 = 2.
(For simplicity, we write degrees in increasing order.) So we start filling in our
character table:

(e) | (ijk) | (4,—1) | (4, —4) | (k,—k)
X1 1 1 1 1 1
x2 | 1
xs | 1
xa | 1
X5 | 2

(recall x(e) = dim(V') and that the character for the trivial representation takes
the constant value 1). We note that (ijk)? = e in this group, so x(ijk)? = 1.
Since ijk # e, we must have x(ijk) = —x(e) for nontrivial x.



(6) | (k) | (=) | Go—i) | (k)
1] 1 1 1 1
x2| 1] -1
xs| 1 | -1
xa| 1| -1
Xs| 2 | -2

Since (x¢, x¢) = 1, we know x2,34(7) = £1, and similar for j, k. Since we have
three nontrivial one-dimensional irreducible representations, and we must satisfy
our orthogonality relations, we must have exactly one of x2(7), x2(j), x2(k) is
1, and the other two are —1. So we select x2(i) = 1, x2(j) = x2(k) = —1, and

similar for ys, x4.

(e) | (ijk) | (i, =) | (4, —j) | (k,—k)
i1 1 1 1 1
ol 1] =1 ] 1 1 1
a1 =1 =1 1 1
a1 =1 =1 [ =1 1
Xs| 2 | —2

We can verify that the orthogonality relations are satisfied. Finally, we know
that (xs,xs) = 1. We know (x5, xs5) =1 = Z Ix5(9)[% s0 Z Ixs(9)” = 8.

But xs(e)? + x5(ijk)? = 8, so x

character table:

geG

geG

(1) = x5(j) = x5(k) = 0. So we found our

(e) | (ijk) | (3, —1) | (4, —3) | (k, —F)
xi| 1] 1 1 1 1
2| 1| —1 1 —1 -1
3| 1| =1 | -1 1 -1
ya| 1| -1 | —1 —1 1
s | 2 | =2 0 0 0

Exercise 7. Find the character table for Dg, the dihedral group of order 8.

Using representation theory to find information about groups can be time con-
suming, but it is a very powerful tool to glean information about groups without
having to list all of their elements. Listing elements of a group given its presen-
tation can be immensely difficult, and while character theory can be tedious, it
is a well-defined algorithm that will always result in a correct character table.
Be careful, a character table does not completely define a group! (See Exercise
) But the character table provides extremely useful information about a group
and its structure that can only be found through representation theory.

10



3 Quivers

3.1 Prerequisites

1. representation theory of finite groups: all the material covered in
Section 2]

2. linear algebra: vector spaces, quadratic forms

3.2 Basics of Quiver Representations

Definition 9 (quiver). A quiver is a graph where arrows are directed and we
allow multiple arrows between vertices.

We always require a quiver to have a finite number of vertices and a finite
number of arrows.

Definition 10 (source, target). Let Q be a quiver and e an arrow in Q We
say the source of e is its starting point and the target of e is its ending point.
We write s(e) and t(e) respectively.

Here is an example quiver:

I
° ~_ I 3
L)
We write Cj to represent a quiver. Qg is the set of vertices in C} and @ is the
set of arrows in ) (quivers have arrows in them, get it?).

Exercise 8. Write Q¢ and Q1 for our example quiver.

We will often want to assign an integer to every vertex in Q (we will see why very
shortly), and we write Z%° to represent the set of all such choices (equivalently,
79 is the collection of all functions Qo — Z). We can define a quadratic form
(ie. a function that takes the place of z — |z|2 in a vector space) on Z%° by

ag(@) =D aj— D dijwiz;
JEQo 1,]€Qo

where d;; is the number of arrows in Q that start at ¢ and end at j. This is
called the Tits form (after Jacques Tits, don’t laugh).

Definition 11 (representation of a quiver). Let Q be a quiver. A represen-
tation of Q is a collection of vector spaces {V;}icq,, one for each vertex, and
linear maps {Te : Vi) = Vi(e) ec@ -

11



Intuitively, a quiver is a template for a collection of vector spaces and linear
maps between them, and a representation of a quiver is a choice of vector spaces
and maps that fits into the quiver template. The following is an example of a
representation of our example quiver:

3
c e
1 1 5 Jj
C C

Definition 12 (dimension). Given a representation V- = {{V;}icqo: {Te}tec, }
of Q, we say the dimension of V, written dim(V'), is the function f : Qo — Z
given by f(i) = dim(V;).

3

For any representation V' of C}, dim(V) € 7. In our example representation,
dim(V) = (1,1,1,1).

Definition 13 (direct sum of representations). Let @ be a quiver and V,W be
representations of Q We define V& W to be the representation where (V &
W)yi=VieW,and T, : V;eW; =V, @W; =Ty, ®Tw, (ie. the direct sum
of the corresponding linear maps in V. and W ).

This definition and the next one closely follow the finite group case.

Definition 14 (indecomposable representation). Let Q be a quiver and V a
representation. We say V' is decomposable if there are two representations
UW of Q so that V =U & W, and indecomposable if no such U, W exist.

Important: indecomposable and irreducible are not the same for quivers! We
will only discuss indecomposable representations, but do not confuse these with
irreducible representations! With some basic definitions out of the way, let’s
start looking at the ADE Classification of quivers.

3.3 Finite-Type Quivers

Definition 15 (finite-type quiver). A quiver C} 18 said to be finite-type if there
are only finitely many indecomposable representations of Q, and infinite-type
otherwise.

Unlike the finite group case, most quivers have an infinite number of indecom-
posable representations. But which quivers are finite-type?

Theorem 4 (Gabriel). A quiver Cj is finite-type if and only if its Tits form 45
1s positive definite.

12



Recall that a quadratic form ¢(z) is said to be positive definite if g(x) > 0 for
x > 0. This remarkable theorem of Gabriel allows us to directly classify finite
type quivers. It is easy to prove (although we will not prove it here) that the
Tits form for Q is positive definite if and only if @ (the underlying graph of Q,
ie. the graph with no directions on the arrows) is one of the following:

The first quiver is called A,,, where n is the number of vertices. The second
quiver is called D,,, where n is the number of vertices. The third quiver is Ej,
the fourth is F7, and the fifth is Fg. Together, these two infinite families and
three explicit quivers are called the ADE quivers. They show up everywhere
in math: in representation theory (here, in Lie theory, etc), in string theory,
in geometry, etc. It is amazing that these quivers can be found not only by
investigating the Tits form but also by considering finite-type quivers.

3.4 McKay Correspondence

We will construct a specific type of quiver called a McKay quiver. Let G
be a finite group, V1, Vs, ..., V, be the irreducible representations of G except
for the trivial representation, and V any representation of G. Recall that any
representation of G can be decomposed into a sum of irreducible representations.
Let A;; be the number of times V; appears in the decomposition of V ® V;.
Then, we can define a quiver Q where the vertices are the indecomposable
representations and there are A;; arrows between any two different vertices.
This is not easy for us to compute since we did not discuss the tensor product

13



in depth, but as an example with G = C3, we get the quiver Ay as its McKay
quiver.

Let’s change topics drastically (the connection will appear shortly). SU(2) is
the group of all 2-by-2 complex matrices that are unitary (ie. A*A® = I, where
A* is the complex conjugate of A), under multiplication. It can be thought of as
the group of rotations on the surface of the sphere. A finite subgroup of SU(2)
represents a finite symmetry of the sphere, ie. a regular polyhedron (Platonic
solid) or a regular polygon.

We can then classify these subgroups:

1. C,, n > 2 corresponding to the symmetries of a singular n-gon

2. Dsy,, n > 2 corresponding to the symmetries of two n-gons attached at
every edgtﬂ

3. T, the symmetries of the tetrahedron

4. O, the symmetries of the cube or octahedron (these are dual shapes and
as such have the same symmetries)

5. I, the symmetries of the dodecahedron or icosahedron (these are dual
shapes and as such have the same symmetries)

Now, we arrive at the amazing theorem:

Theorem 5 (McKay). Finite subgroups of SU(2) are in bijection with ADE
quivers via the construction of the McKay quiver.

The McKay quiver of Cy, is A,,—1, the McKay quiver of Dy, is D,, 12, the McKay
quiver of T'is Fg, the McKay quiver of O is Er, and the McKay quiver of I is Ej.
This is a truly extrordinary result that appears out of nowhere! There are two
infinite families of ADE quivers corresponding to polygons and dihedrons, and
three explicit quivers that correspond, amazingly, to the five Platonic solids!

Lthis is called a dihedron and is difficult to visualise, but imagine the top half of the sphere
is one polygon and the bottom half of the sphere is the other polygon

14
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