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1 Introduction

Numerology is often a coincidence. It’s quite rare in math that a simple equality
of two numbers has a deep underlying understanding.

196884 = 196883 + 1

- John McKay, 1978

This formula looks really coincidental, but it actually connects two vastly
different areas of math. The left-hand side is the 1st order coefficient of the q-
expansion of the j-invariant. The right-hand side is the sum of the dimensions of
the two smallest irreps of the monster group. To quote Terry Gannon (author
of [Gan07], the book we are following for this seminar), “moonshine is the
explanation and generalisation of this unlikely connection” [Gan04]. Now, this
could just be a coincidence. We can expand the j-invariant as

J(τ) = q−1 + 196884q + 21493760q2 + 864299970q3 + . . .

([Gan04]) and the irreps of M have dimensions

1, 196883, 21296876, 842609326, . . .

([Slo19]).

196884 = 196883 + 1

21493760 = 21296876 + 196883 + 1

864299970 = 842609326 + 21296876 + 2 · 196883 + 2 · 1

So there is definitely something interesting going on here!
Today, I will give a brief overview of the important components of Moonshine

and state the conjecture that we will prove this quarter.
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2 What is the Monster?

In the mid to late 20th century, one of the major topics in finite group theory
was finite simple groups. There was a massive effort by many leading math-
ematicians to fully classify the finite simple groups, and it was completed in
2004. It took nearly a hundred authors publishing tens of thousands of pages
between 1955 and 2004 to finish the classification. Today, we know that the
finite simple groups fit into four classes: three infinite families and 26 sporadic
groups. These are

1. Z/pZ where p is prime

2. An, n ≥ 5

3. Groups of Lie type (including the Tits group)

4. One of the 26 sporadic groups

These are important for a variety of reasons, but one nice reason is that every
finite group admits a composition series by simple groups, and by Jordan-Hölder,
it is unique up to permutation. So classifying finite simple groups allows us to
understand the composition of all finite groups. Of the sporadic groups, the
largest one has order

|M | ≈ 8 · 1053

and is called the Monster group M (a.k.a. F1). There are a lot of ways of
thinking about the Monster group (which Zach will go into detail on next week),
but the original creation that I’d like to discuss is due to Griess. In 1980, Griess
showed that there exists a commutative, nonassociative algebra Gr on a real
vector space of dimension 196884, with Aut(Gr) = M . This used to produce
the first full construction of M in 1982.

In particular, M fixes a vector v and acts irreducibly on (span({v}))⊥, so
Gr decomposes as a sum of span({v})⊕Gr196883, where M acts trivially on the
first factor and irreducibly on the second factor. This gives the first meaning to
196884 = 196883 + 1: Gr decomposes as the trivial representation of M plus a
simple (in fact the smallest simple) of dimension 196883.

3 What is the j-invariant?

Now, let’s introduce the other key component, the j-invariant. I’ll define the
basics of modular curves, and explain where the J function comes from. We all
know that SL2(R) acts on the complex upper-half plane H by fractional linear
transformations. Really it is PSL2(R), but we will work with SL for convenience.

Let G be a discrete subgroup of SL2(R). G \H is a complex curve. We say
G is of genus g if G\H is of genus g. The most important choice is G = SL2(Z),
and this is of genus 0.
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Definition 1 (Moonshine-type modular group). We say a subgroup G ⊂ SL2(R)

is Moonshine-type if it contains Γ0(N) for some N and

[
1 t
0 1

]
∈ G for t ∈ Z.

Here, Γ0 is the level-zero congruence subgroup,

Γ0(N) =

{(
a b
c d

)
|c ≡ 0 mod N

}
Any Moonshine-type modular group is necessarily commensurable with SL2(Z)
(i.e. their intersection has finite index in both it and SL2(Z)).

Definition 2 (modular function). For G a modular group (subgroup of SL2(R)
commensurable with SL2(Z)), we can define a class of meromorphic functions
f : H → C which are modular for G: f is stable under the action of G on H,
and for any A ∈ SL2(Z), f(A · z) has a Fourier expansion in q = e2πiz, given
by ∑

bnq
n/N

where N, bn depend on A and at most finitely many bn for n < 0 are nonzero.
This is called the q-expansion of f .

This tells us the usual facts that you may have seen as a definition of modular
functions: f is meromorphic on the compact surface G \H, where H = H∪Q∪
{∞}, and the G-orbits of Q∪{∞} are called the cusps of G. In particular, if G
is a genus-0 group of Moonshine type, then there is a unique modular function
JG, with a q-expansion of the form

JG(z) = q−1 +

∞∑
n=1

anq
n

and all other modular functions for G are rational functions of JG. This JG is
called the Hauptmodul for G. In particular, for G = SL2(Z), the Hauptmodul
is

JSL2(Z)(z) = q−1 + 196884q + 21493760q2 + 864299970q3

Historically, for reasons we will discuss in another talk, j(z) = J(z) + 744 was
considered instead. This number 744 will also appear again later.

4 The Conjectures

The original question of Moonshine was... “why?” Why is 196884 so close to
196883? One of the core objects in Moonshine, that we will discuss later, is the
Moonshine module, an infinite-dimensional graded M -module V . It has

dim(V ) =
∑

qn dim(Vn) = qJ(z)
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where q = e2πiz. This doesn’t completely determine V (nor is this a construction
of V ), but if we for a moment assume we have such a V , we can also consider
(due to Thompson) the traces

Tg(z) := q−1
∞∑
i=0

χVn(g)q
n

(recalling that M acts on every graded component). Taking g = 1 is a twist of
the previous formula. The so-called “fundamental conjecture” of Conway and
Norton claims that for every g ∈ M , Tg(z) is the Hauptmodul of a genus-0
subgroup Gg of SL2(R) (of Moonshine type).

The first Moonshine-esque result (due to Ogg) was that the list of primes

p when Γ0(p)
+ :=

〈
Γ0(p),

1√
p

(
0 −1
p 0

)〉
had genus 0 was precisely the list of

primes dividing |M |. More results soon came, until the conjecture of Conway-
Norton was proved by Borcherds in 1992.
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