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1 Outline
This talk will cover the Jacquet-Langlands correspondence in [JL70]. I will use
this as a defining example of the Langlands philosophy, and briefly discuss how
this connects to L-functions. I’d imagine it would be illegal to give a talk in this
class without at least mentioning L-functions!

After motivating this result, I will follow the exposition in [Bad01] and their
general outline. In particular, I will not follow Jacquet-Langlands’s proof for
GL(2). Instead, I will consider GL(2) as a starting point, but sketch a proof of
the Jacquet-Langlands correspondence for GL(n) following [Bad19]’s exposition
on the proof of Deligne-Kazhdan-Vignéras [DKV84].

2 Definitions
We fix F a local non-Archimedean field for this talk.

Definition 1 (semisimple element). An element g ∈ G is called semisimple
if its characteristic polynomial has distinct roots over F . The conjugation of a
semsimple element is semisimple, so we may refer to semisimple conjugacy
classes.

Definition 2 (inner form). Let G′ be an algebraic group over F . If G′ ⊗F F ∼=
GLn(F )⊗F F = GLn(F ), then G′ is called an inner form of GLn(F ).
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In particular, let r, d be two positive integers so that rd = n. If D is a central
division algebra over F of dimension d2, then G′ = GLr(D) is an inner form
of GLn(F ). Classical algebra tells us that all inner forms of GLn(F ) are of this
form.

Definition 3 (admissible representation). Let G be a locally compact group. If
π is a representation of G on a Hilbert space H, we say π is admissible if V K

is finite-dimensional for any compact open subgroup K ≤ G.

Definition 4 (square-integrable representation). Let G be a locally compact
group and H a Hilbert space. A unitary, irreducible representation π of G on
H is said to be square-integrable if for all nonzero ϕ, ψ ∈ H we have∫

G

|⟨π(g)ϕ, ψ⟩|2 dg <∞

where dg is the (right) Haar measure.

We write E2(G) to denote the set of all admissible, square integrable represen-
tations of G. These are not the same as automorphic representations, but they
are quite related (as we will see later).

Theorem 1 (Jacquet-Langlands, [Bad01] 2.4). Let G′ be an inner form of G.
Then there is a correspondence

E2(G′)
∼−→ E2(G)

that is in some sense “character-preserving": if π′, a representation of G′, maps
to π, then we must have

χπ(g) = (−1)n−rχπ′(g′)

whenever g ↔ g′.

This is the local formulation. This was proven in the GL(2) case by Jacquet-
Langlands, GL(3) for char(F ) = 0 by Flath, r = 1, n > 1 by Rogawski, and
finally char(f) = 0 by Deligne-Kazhdan-Vignéras.

3 Langlands Philosophy
Why do we care about this? What is the use of this? The answer is that, on
average, inner forms of GL(n) are vastly easier to work with and we would love
more information about automorphic representations, Galois representations, L-
functions, and modular forms associated to GL(n), as they all contain important
arithmetic data. Directly finding automorphic representations of GL(n) would
be amazing, because they are associated to a multitude of sources of valuable
arithmetic data. But it can be hard to actually find these representations!
Reducing the problem to GLr(D) is easier most of the time.
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As an example, consider the original Jacuqet-Langlands correspondence for
GL(2). It relates automorphic representations of GL(2), a very valuable thing
to know, to quaternion algebras. Quaternion algberas are much easier because
they can be studied via Shimura curves (according to Jacob), which is something
that can actually be done in practice. A lot is known about curves, not so much
about automorphic representations!

This result, Jacquet-Langlands and its subsequent generalisations, forms the
basis of the Langlands Programme.

4 L-Functions
I will explain some of the results on L-functions and how this result is use-
ful, following the result of Tamagawa [Tam63], rather than Jacquet-Godement
[JG72].

Definition 5 (Hecke algebra). For G a reductive group over F , the Hecke
algebra of G, denoted H(G), is given by

H(G) := {f : G→ C|f is locally constant with compact support}

and is an algebra under the convolution product.

Definition 6 (Langlands dual). For a reductive group G with root datum
(X•, X•), the Langlands dual LG is the reductive group with root datum
(X•, X

•) (permuting the roots and coroots).

A core tools that allows us to understand L-functions is the Satake iso-
morphism, that allows us to transfer eigenvalues of the Hecke algebra to local
L-functions. We will work over C for this section. The Satake isomorphism tells
us that

H(G)⊗ C ∼= R(LG)⊗ C

So to any complex character of the Hecke algebra, we can associate a character
of R(LG): a character is a map ω : R(LG) ⊗ C → C. But these characters
are indexed by semisimple conjugacy classes in LG(C) ([Gro10] 6), so we have
a correspondence between complex characters of the Hecke algebra of G and
semisimple conjugacy classes in its dual. To a character ω of H(G), we write
s(ω) for this conjugacy class, called its Satake parametre.

Theorem 2 ([Gro10] 6.4). The map π 7→ s(π) gives a bijection between the set
of isomorphism classes of unramified (dimπK = 1) irreps of G and the set of
semisimple conjugacy classes in LG(C).

If π = π(s) is an unramified representation of G, and V is a complex,
finite-dimensional representation of LG(C), we can define the local L-function
L(π, V,X) in C[[X]] by
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L(π, V,X) = det
V

(1− sX)−1

In particular, let G = GLn so that LG = GLn(C). Take V = Cn the standard
representation. We will leave αi undefined (they are eigenvalues of certain coroot
elements [char(Kλ(π)K), via the Cartan decomposition for coroots] acting on
πK). Then, by the formula of Tamagawa [Tam63],

L(π, V,X) =

(
n∑

k=0

(−1)kq−k(n−k)/2 · αk ·Xk

)−1

So we can get interesting calculations for local L-functions derived from our
representations of G. But in general, finding representations of G can be hard,
so we would like an easier way to do that!

5 Interlude
Definition 7 (orbital integral). For g ∈ G (not actually all, only the regular
semisimple, but we ignore this), the centraliser of g is a maximal torus Tg. For
f ∈ H(G), define the orbital integral of f with respect to g as

Φ(f ; g) :=

∫
G/Tg

f(xgx−1) dx

I will slightly switch paradigms here, from local to global. For the previous
half of the talk, I only mentioned representations of G and G′, and in particular
never mentioned automorphic representations or adeles. These are purely local
phenomena, but in order to prove this correspondence, we need to switch to the
global setting for a moment.

Let K be a global field and G a reductive group over K with centre Z. For
every place ν of K, let Kν be the completion of K at ν, Gν := G(Kν), and
Zν = Z(Kν). Let A be the adeles of K. Let Oν be the ring of integers of Kν .

We define G(A) to be the restricted product of G(Kν) with respect to G(Oν).
Let H(G(A)) be the Hecke algebra over G(A). For each finite ν, we fix a Haar
measure on Gν that gives G(Oν) measure 1. For all other ν, fix an arbitrary
Haar measure on Gν . For every place ν we have Zν

∼= K∗
ν , so fix a Haar measure

that gives O∗
ν measure 1. Taking the product measures, we get measues on G(A)

and Z(A), which we will fix implicity for the remainder of this talk.
For ω a unitary character of Z(A) trivial on Z(K), we can define L2(G(A), ω)

as the space of functions ϕ : G(A) → C such that

1. ϕ is left invariant under G(K)

2. for z ∈ Z(A) and g ∈ G(A), ϕ(zg) = ω(z)ϕ(g)

3. ∫
G(K)Z(A)\G(A)

|ϕ(g)|2 <∞
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This is a Hilbert space.

Definition 8 (cuspidal form). For ϕ ∈ L2(G(A), ω), we say ϕ is cuspidal if for
every proper parabolic subgroup P of G, with N its unipotent radical, we have∫

N(K)\N(A)
ϕ(ng) dn = 0.

We denote L2
c(G(A), ω) the subspace of cuspidal forms. G(A) acts on L2(G(A), ω)

by translations, and it fixes L2
c(G(A), ω). Let ρc be the representation of G(A)

on L2
c(G(A), ω) induced by the action on L2(G(A), ω). Then ρc is a unitary

representation with central character ω. It is not irreducible. In fact, it decom-
poses discretely and every irrep summand has finite multiplicity. An irreduvible
subrepresentation of ρc is called a automorphic cuspidal representation. These
are the main object that we will need to fully formulate and prove the Jacquet-
Langlands correspondence.

6 A Sketch of a Proof
Following [Bad19], we introduce a six-step plan to prove this theorem.

6.1 Step 1: Statement and Transfer Theory
This is what I did at the beginning of this talk, but I will elaborate now. Fix a
place ν, and as in the original statement let G,G′.

1. Define an injection from conjugacy classes of G′
ν to the classes of Gν

2. Write g ↔ g′ for g ∈ Gν , g
′ ∈ G′

ν if they are conjugate under the previous
map

3. Write f ↔ f ′ for f ∈ H(Gν), f
′ ∈ H(G′

ν) if Φ(f ; g) = Φ(f ′; g′) when
g ↔ g′, and Φ(f ;−) is zero on classes not in the image of the previous
map

This allows us to state the local correspondence:

Theorem 3 (local Jacquet-Langlangs, [Bad19] 6.1). Let G,G′ as before. Let
π be an admissible, square integrable representation of Gν . Then there is a
unique up to isomorphism representation π′ of G′

ν such that trπ(f) = ± trπ′(f ′)
whenever f ↔ f ′, and the sign depends only on G′ (not even on the place).

6.2 Step 2: The Trace Formula
Theorem 4 (Selberg trace formula). Let f ∈ H(G(A)), such that there is a
cuspidal representation π and place ν1 so that tr(π(fν1

)) = 1 and tr(π′(fν1
)) = 0

for all other smooth cuspidal irreps of G. There is another required condition
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(ν2 with fν2 supported in the elliptic set of Gν2) but we omit it for simplicity.
Then, ρc(f) has a trace, and

tr(ρc(f)) =
∑
O∈X

µ(GγO
(F )Z(A) \GγO

(A))
∫
Z(A)

ω(z)Φ(f, zγO) dz

where X is the set of conjugacy classes in in Z(K) \ G(K). For O ∈ X, pick
γO ∈ O and let GγO

denote the centraliser.

The next step is to verify the previous theorem for G,G′.

6.3 Step 3: Comparing the Trace Formulae
This is the most arcane step so we will omit it for time. Put simply, we pick a
nice set of f ↔ f ′ and verify the equality geometric sides of the trace formulae
manually.

6.4 Step 4: Separate Discrete Series
Let S be the set of places where G′ does not split. We can write G(A) =
GS ×GV \S , where

GS =
∏
ν∈S

Gν , GV \S =
∏
ν ̸∈S

Gν

and similarlyG′(A) = G′
S×G′

V \S . We can write ρc =
⊕
πmi
i with πi irreducible,

so our previous step tells us∑
i∈I

mI trπi(f) =
∑
j∈J

m′
j trπ

′
j(f

′)

when f ↔ f ′. Using our decomposition, we write πi = πi,S ⊗ πi,V \S . We note
that G′

V \S = GV \S , so we can simply write It, Jt as the decompositions for
GS , G

′
S , and we have ∑

i∈It

mi trπi(f) =
∑
j∈Jt

m′
j trπ

′
j(f

′)

6.5 Step 5: Prove the Global Correspondence
Then, we prove the Strong Multiplicty-One Theorem: all mi,m

′
j = 1, and

|It| ≤ 1, |Jt| ≤ 1. Thus, we can fix a discrete series representation Π of G′(A),
and set t := Π′

V \S . Then |It| = 1 and we see there is a representation Π of G(A),
which is a discrete series representation (recall discrete series means subrep of
ρ, while cuspidal is subrep of ρc), and

trΠS(f) = trΠ′
S(f

′)
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and we see the Global Jacquet-Langlands Correspondence: we have an
injective map from the set of discrete series of G′(A) to those of G(A) that is
character-preserving.

6.6 Step 6: Prove the Local Correspondence
Finally, we see that ∏

ν∈S

trΠν(fν) =
∏
ν∈S

trΠ′
ν(f

′
ν)

if fν ↔ f ′ν ∈ S. By varying only fν0
, f ′ν0

, we see that

trπν0(fν0) = λ trπ′
ν0
(f ′ν0

)

It can then be shown that λ = ±1 depending only on G′, and we are done.

7



References
[Tam63] Tsuneo Tamagawa. On the -Functions of a Division Algebra. 1963.

url: https://www.jstor.org/stable/1970221.
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