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Introduction

These notes are written by me (Max Steinberg) and my DRP students. They
are not intended to be full course notes; rather, they serve as a companion to the
weekly meetings of the DRP, and contain exercises that I assigned weekly. It also
contains solutions written by me and my students. The goal is that eventually,
through the work of me and several sets of DRP students, this document will
serve as a basic outline of the theory of differential forms, with exercises and a
solution manual, fit for use as a companion to a course.

What are differential forms? Differential forms are a framework to encap-
sulate all of the different results from calculus, in any dimension. When you
took calculus, you might remember seeing a lot of similar-looking results, like
Stokes’s Theorem and Gauss’s Theorem (the Divergence Theorem).∫∫

D

∇× F⃗ =

∫
∂D

F⃗

∫∫∫
D

∇ · F⃗ =

∫∫
∂D

F⃗

In the language of differential forms, these results, and many more, are
encapsulated by one theorem:

Theorem 1 (Stokes-Cartan Theorem).∫
D

dω =

∫
∂D

ω

Similarly, you probably learned about the dot and cross products in the first
few weeks of multivariable calculus. If v, w ∈ R3 are vectors, then v · w is a
scalar that measures how much v and w are parallel, and v×w is a vector that
is perpendicular to both v and w. In the language of differential forms, v · w is
given by v ∧ ∗w, and this can be directly interpreted as how parallel v and w
are. Similarly, v × w is given by v ∧ w, which denotes the plane containing v
and w. Recall that a plane is defined by its perpendicular vector – the plane
containing v and w is equivalent to the vector v × w.

Differential forms also provide a conceptual framework in which to under-
stand concepts that might otherwise feel unmotivated or arbitrary, such as curl.
I’ve taught and tutored for several calculus courses, including MATH 120 at
Yale, and being totally honest, I still don’t remember the formula for curl. But
I understand it in differential forms, so I can derive it and compute it whenever I
need it, and I understand how it fits into the bigger picture of three-dimensional
geometry. Hopefully by the end of these notes you will too!
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1 Orientation and Wedge Product

1.1 Orientation

Differential forms, among their other uses, give us a formulaic way to work with
orientation. Let v, w ∈ R3 be vectors. How can we think about the orientation
of the plane generated by v and w? There are two important things we want an
orientation to satisfy: if we swap the order, there should be a minus sign, and
if v = w, then the orientation is zero.

Exercise 1. Explain in pictures why both of these requirements make sense.

From calculus, you might remember an operation that takes two vectors, v
and w, that satisfies both of these axioms: v?w = −w?v and v?v = 0. The cross
product! v × w = −w × v and v × v = 0.

Exercise 2. Actually, if v×w = −w× v, then we already have that v× v = 0.
Prove this!

In fact, the cross product satisfies another even stronger property that is
quite important: it is bilinear. That is, (cv⃗ + w⃗) × u⃗ = c(v⃗ × u⃗) + (w⃗ × u⃗).
In fact, up to swapping arguments and scaling, the cross product is the unique
bilinear map R3 ×R3 → R3 that satisfies v × w = −w × v1. In Chapter 3, we
will use some linear algebra to further this idea.

Since the cross product is bilinear, what if we tried to make a vector space
out of all the possible cross products? Since the cross product is a surjective
map R3 ×R3 → R3, we know the answer will just be R3. But this provides an
interesting new basis of R3: {i × j, j × k, k × i}. We that this is just the same
as {k, i, j}, but thinking about things this way allows us to extend to higher
dimensions more easily.

1.2 Wedge Product

So let’s define this in any dimension. Fix n > 0, and let {ei}ni=1 be the standard
basis of Rn. Fix some 0 ≤ k ≤ n. Let V be the vector space with basis

{ei1 ∧ ei2 ∧ · · · ∧ eik}1≤i1,i2,...ik≤n

subject to ei ∧ ei = 0, ei ∧ ej = −ej ∧ ei. The symbol ∧ is called the wedge
product, and we simply use it here to combine vectors. It doesn’t do anything
other than say “these two symbols are next to each other” (like the hyphen in
english).

Exercise 3. Prove that V has dimension
(
n
k

)
. Does this make sense if k = 0?

1Under the canonical (fixing a basis) identification
∧2 R3 ∼=

∧1 R3 given by the Hodge
star, this can be written as a map

∧1 R3 ⊗
∧1 R3 →

∧2 R3 that is alternating, and thus a∧
R3-algebra morphism. The hom-space is 1-dimensional, generated by the wedge (cross)

product.
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For any v ∈ V , we say that v is a k-vector. A 1-vector is just a vector (why?).
A 0-vector is a scalar (why?).

A k-vector denotes a specific orientation for a k-dimensional object in Rn.
So for example, a plane in R3 is 2-dimensional, so a 2-vector represents its
orientation. The unit ball in R3 is 3-dimensional, and a 3-vector represents its
orientation.

Example 1. Let n = 3, k = 2. Consider u, v ∈ R3. By the previous discussion,
we can say that u and v are 1-vectors. The element u∧ v ∈ V is a 2-vector that
corresponds to the plane containing u and v. Using the right-hand rule, we can
determine which direction u × v (the cross product) sits. Writing v ∧ u ∈ V is
a different 2-vector than u∧ v, which corresponds to using v first and then u in
the right-hand rule.

Exercise 4. Pick two vectors u, v ∈ R3. Directly compute u × v and u ∧ v.
Compare your results.

Exercise 5. Let ω be a k-vector and θ a ℓ-vector on Rn, where n > k+ℓ. Prove
that

ω ∧ θ = (−1)kℓθ ∧ ω

Recall that
(
n
k

)
=
(

n
n−k

)
. From our knowledge of linear algebra, this means

these vector spaces are isomorphic! We can construct an explicit isomorphism:

Example 2. Let n = 3, k = 2. We can construct an isomorphism ϕ : V (3, 2) ∼=
V (3, 1) given by ϕ(e1 ∧ e2) = e3, ϕ(e3 ∧ e1) = e2, ϕ(e2 ∧ e3) = e1.

Definition 1 (Hodge star). Write ∗a := ϕ(a). This is called the Hodge star
of a.

Theorem 2. Let a, b be vectors in Rn. Then

a ∧ ∗b = ⟨a, b⟩ e1 ∧ e2 ∧ · · · ∧ en.

Exercise 6. Explicitly find the isomorphism from V (4, 1) ∼= V (4, 3), using the
previous theorem.

Exercise 7. Think about the Hodge star on R3. We found the inner (dot)
product – how can we also find the cross product? Hint: how did we start this
discussion?
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2 Differential Forms

2.1 Covectors

We will finally define differential forms! But first, we need to introduce covectors.
Let V be a finite-dimensional real vector space. Recall that we can construct

the linear dual V ∗ consisting of linear operators V → R. We call an element
v ∈ V ∗ a linear functional2 or covector. Since dim(V ) < ∞, let n = dim(V ) =
dim(V ∗). We have a non-canonical (basis-dependent) isomorphism between
V and V ∗. Take a moment to think about what the isomorphism is. Hint:
⟨v, w⟩ = vtw.

The answer is the transpose. If v is a vector of dimension n, then it can be
considered a n-by-1 matrix, so vt is a 1-by-n matrix. A linear map ϕ : V → R
is a map from Rn → R, so it has size 1-by-n. So ϕt is a n-by-1 matrix, or a
vector. So the map V 7→ V ∗ given by the transpose is invertible (given by the
transpose once again), so it is an isomorphism.

So now, let’s consider n-covectors. These are defined identically to n-vectors
but with V ∗ in place of V . Once again, a 0-covector is a scalar (coscalars are
just scalars, since the transpose of a 1-by-1 matrix is itself), and a 1-covector is
just a covector.

Let V = Rn for simplicity. We have a standard basis {x1, x2, . . . , xn}, and
we have a resulting dual basis {dx1, dx2, . . . , dxn}, where dx1 = xt1.

3

Exercise 8. Verify that this is actually the dual basis. That is, show that
dxi(xj) = δij.

Example 3. The space of 2-covectors for V has a basis {dx1 ∧ dx2, dx1 ∧
dx3, . . . , dx1 ∧ dxn, dx2 ∧ dx3, . . . , dx2 ∧ dxn, dx3 ∧ dx4, . . . , dxn−1 ∧ dxn} with(
n
2

)
= n(n−1)

2 elements.

2.2 Differential Forms

Definition 2 (differential form). Let n > 0 and 0 ≤ k ≤ n. A k-differential
form on Rn, also written as k-form on Rn, or just a k-form when n is clear,
is a k-covector on Rn, but with coefficients in C∞(Rn) rather than R.

First of all, C∞(Rn) represents smooth functions on Rn: functions which
are differentiable everywhere, infinitely many times.4 Second, what does this
definition even mean?

From the previous example, we saw that dx1∧dx2 was an example 2-covector
on Rn. This is also a 2-form on Rn. So is sin(x1) dx1 ∧ dx2, which is not a 2-
covector. So just like how space of k-covectors on Rn was defined as the R-span

2I strongly dislike this terminology, and will not use it.
3I usually use ei for the standard basis. The use of x will become clear once we introduce

functions.
4They may not be analytic. Cω(Rn) denotes analytic functions.
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of a certain basis, the space of k-forms on Rn is the C∞(Rn)-span of the same
basis.5

Example 4. Let ω = sin(x) dx+cos(xy) dy− ez−x dz. This is a 1-form on R3,
where our basis is {x, y, z}.

We will often write our differential forms in summation notation to remain
general. So we may say ω is a k-form on Rn given by

ω =
∑
Ik

fI dxI .

We often omit the k in Ik when k is clear.

Definition 3 (multi-indices). When we write this, we mean∑
i1,i2,...,ik

fi1,i2,...,ik dxi1 ∧ dxi2 · · · ∧ dxik .

Example 5. Using our multi-indexing notation, we can take an example 2-
form on R3, ω = x dy ∧ dz + y dx ∧ dz + z dx ∧ dy. Then ω =

∑
I fI dxI , and

f1,2 = z, f1,3 = y, f2,3 = z.

Exercise 9. Write a 1-form, a 2-form, and a 3-form on R3. For each, describe
the functions you chose and what indices they correspond to. (For example, if
ω = 1 dx, then f1 = 1, f2 = 0, f3 = 0).

Exercise 10. Let θ be a 1-form on R3 and ω be a 2-form on R3. What is θ∧ω?

5Since C∞(Rn) is a R-algebra, this says that Ωk(Rn) (k-forms) is just
∧k(Rn)⊗RC

∞(Rn).
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3 ∗ Tensor Products and the Exterior Algebra

This section is a little bit algebraic and formal, so if you would like, you can
take the result of Exercise 15 and Theorem 3 as god-given and skip this section
entirely.

Recall from linear algebra that given two vector spaces V and W (all vec-
tor spaces we ever consider will be finite-dimensional), we can form their direct
sum V ⊕W satisfying dim(V ⊕W ) = dim(V ) + dim(W ). V ⊕W has a ba-
sis {(vi, 0), (0, wj)} where {vi} are a basis of V and {wj} are a basis of W .
So a question might be, is there a vector space V ?W so that dim(V ?W ) =
dim(V ) dim(W )?

The answer is yes: V ⊗W (read “V tensor W”) satisfies dim(V ⊗W ) =
dim(V ) + dim(W ). It is defined with a basis {vi ⊗ wj}, and hence has ij
elements in its basis. We define v ⊗ w + v′ ⊗ w = (v + v′) ⊗ w and similar for
v⊗w+v⊗w′, but v⊗w+v′⊗w′ cannot be simplified. For scalar multiplication,
c(v ⊗ w) = (cv)⊗ w = v ⊗ (cw).

Example 6. Let V = C2 be the 2-dimensional complex vector space. We can
give it a basis {(1, 0), (0, 1)}. Then V ⊗ V has basis {(1, 0) ⊗ (1, 0), (1, 0) ⊗
(0, 1), (0, 1)⊗ (1, 0), (0, 1)⊗ (0, 1)}. If we have (a, b) = a(1, 0) + b(0, 1), then

(a, b)⊗ (c, d) = (a(1, 0) + b(0, 1))⊗ (c(1, 0) + d(0, 1))

= a(1, 0)⊗ c(1, 0) + a(1, 0)⊗ d(0, 1) + b(0, 1)⊗ c(1, 0) + b(0, 1)⊗ d(0, 1)

= ac((1, 0)⊗ (1, 0)) + ad((1, 0)⊗ (0, 1)) + bc((0, 1)⊗ (1, 0)) + bd((0, 1)⊗ (0, 1))

We can write this as a matrix,

(
ac bc
ad bd

)
.

Exercise 11. Let V be the vector space of 2-by-2 real matrices. We know

dimV = 4, so dimV ⊗ V = 16. Let v, w ∈ V with v =

(
a b
c d

)
, w =

(
e f
g h

)
.

Write v ⊗ w ∈ V ⊗ V as a 4-by-4 matrix.
Hint: do you know any other operations on matrices that use the ⊗ symbol?

We can define symmetric and alternating (also known as antisymmetric)
tensors. Let σ : V ⊗ V → V ⊗ V be given by σ(v ⊗ v′) = v′ ⊗ v (just swapping
the order). We say a tensor α ∈ V ⊗V is symmetric if σ(α) = α, and alternating
if σ(α) = −α.

Define S2(V ) as the vector space of symmetric tensors in V ⊗V , and
∧2

(V )
as the vector space of antisymmetric tensors in V ⊗ V .

Exercise 12. Prove that V ⊗ V = S2V ⊕
∧2

V .

In general, we can define SkV as the space of k-symmetric tensors in V ⊗k =
V ⊗· · ·⊗V (k times). k-symmetric means that for any permutation σ ∈ Sk (the
group of permutations on k elements), σ(α) = α. For alternating tensors, we
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say σ(α) = (sgnσ)α, where sgnσ denotes (−1)p, with p the number of swaps σ
makes.

It is still true that V ⊗k = SkV ⊕
∧k

V .

Exercise 13. Let V be a vector space of dimension n. Prove that dim
∧k

(V ) =
0 if k < 0 or k > n.

Exercise 14. Let V be a vector space of dimension n. Prove that dim
∧k

(V ) =

dim
∧n−k

(V ) =
(
n
k

)
.

Exercise 15. ∗ Let ei ∈ Rn denote the i-th standard basis vector. For I =
{i1, . . . , ik}, write eI := ei1∧ei2∧· · ·∧eik . Let Ik = {1 ≤ i1 < i2 < · · · < ik ≤ n}
(the set of all ordered sets of k elements from 1 to n: if k = 2, n = 3 then

I = {{1, 2}, {1, 3}, {2, 3}}). Prove that {eI}I∈Ik
is a basis of

∧k
(Rn).

It turns out that we can create a algebra out of
∧k

V . Define

∧
V :=

⊕
k∈Z

k∧
V

with multiplication given by v × w := v ⊗ w. We will denote this by ∧ (the
“wedge product”), and hence write v ∧ w for the multiplication.

Exercise 16. Let v ∈
∧k

V,w ∈
∧ℓ

V . For what value of p ∈ Z do we have
v ∧ w ∈

∧p
V ?

Exercise 17. Check that
∧
V is well-defined as an algebra. What is its dimen-

sion in terms of dimV ?

Definition 4 (smooth functions). Let C∞(V ) denote the real vector space of
smooth functions: functions V → R that are infinitely differentiable every-
where.

Differential forms are precisely alternating tensors with coefficients in C∞(V )
rather than in R. We can express this formally:

Definition 5 (differential form). A differential k-form on Rn ω is an ele-

ment ω ∈ Ωk(Rn) := C∞(Rn)⊗
∧k

((Rn)∗).

Note that since C∞(Rn) is infinite-dimensional (as a real vector space), so
is Ωk(Rn). This definition is a bit convoluted, so let’s unpack it.

We defined Ωk(Rn) = C∞(Rn)⊗
∧k

((Rn)∗). This is a bit of a complicated

definition, but we can work with it by unpacking it a little bit. Let {vi}
(nk)
i=1 be

a basis of
∧k

((Rn)∗).

Theorem 3. ∗ Let ω ∈ Ωk(Rn). We can uniquely write

ω =
∑
vi

fi(x1, x2, . . . , xn) vi

9



Exercise 18. ∗ Prove this theorem.

By Exercise 15, we can describe (one choice of) {vi}. Let us write dxi to be the
dual basis to ei, in the sense that {dxi} is a basis of (Rn)∗ where dxi(ej) = δij .
Then we can write ∗

ω =
∑
I∈Ik

fI(x1, . . . , xn) dxi1 ∧ dxi2 ∧ · · · ∧ dxik .

This is the formal construction of differential forms that satisfies all of the
properties we want it to.

Exercise 19. ∗ Verify that this formal algebraic object actually contains dif-
ferential forms.
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4 Exterior Derivative

So far we’ve talked a lot about “forms” and not a lot about differentials. Let’s
fix that. Given a differential form ω, we would like to define the derivative of
ω, which we write as dω. Based on how we define a k-form, it makes sense to
say that if if ω is a k-form, then dω is a k + 1-form. So let’s think about how
we can define d.

What’s the first thing we know about derivatives? That the derivative of a
constant is 0. So if we write ω =

∑
fI dxI like usual, and all fI are constant

functions, we can say that dω = 0.
Second, we know that the derivative is linear. This means that if ω and θ

are both k-forms on Rn, and a, b ∈ R, then d(aω + bθ) = a · dω + b · dθ. Third,
we know that the derivative of a scalar-valued function is its gradient. In the
language of forms, if ω = f is a 0-form, then dω should correspond to∇f . Recall
that we can make a map between vectors and 1-forms by replacing x with dx, y
with dy, etc. So if f : Rn → R is a scalar-valued function, then ∇f : Rn → Rn

is given by (fx1
, fx2

, . . . , fxn
), so dω = fx1

dx1 + fx2
dx2 + · · ·+ fxn

dxn.

Exercise 20. Explicitly calculate dω, where ω is the 0-form on R4 given by
ω = sin(x) + y + cos(z) + ew.

With all of these rules in place, we are ready to define d! 6 Let ω =
∑
fI dxI

be a k-form on Rn. We can then calculate dω:

dω = d
(∑

fI dxI

)
(Definition of ω.)

=
∑

d(fI dxI) (Linearity of d.)

=
∑

(dfI) dxI (Because dxI is a constant, so we can pull it out.)

=
∑ n∑

j=1

∂fI
∂xj

dxj

 dxI (Derivative of a 0-form.)

Let’s look at an example.

Example 7. Let ω = (z+cos(y)) dx∧dy+(x+ez) dy∧dz+(y+cosh(xz)) dz∧dx.
Then we can compute dω:

6Notice that we never mentioned the product rule at all. We will come back to this in an
exercise – the product rule needs a slight modification.
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dω = d((z + cos(y)) dx ∧ dy) + d((x+ ez) dy ∧ dz) + d((y + cosh(xz)) dz ∧ dx)

=

(
∂(z + cos(y))

∂x
dx+

∂(z + cos(y))

∂y
dy +

∂(z + cos(y))

∂z
dz

)
dx ∧ dy

+

(
∂(x+ ez)

∂x
dx+

∂(x+ ez)

∂y
dy +

∂(x+ ez)

∂z
dz

)
dy ∧ dz

+

(
∂(y + cosh(xz))

∂x
dx+

∂(y + cosh(xz))

∂y
dy +

∂(y + cosh(xz))

∂z
dz

)
dz ∧ dx

= (0 dx− sin(y) dy + 1 dz) dx ∧ dy
+ (1 dx+ 0 dy + ez dz) dy ∧ dz
+ (z sinh(xz) dx+ 1 dy + x sinh(xz) dz)dz ∧ dx
= 1 dz ∧ dx ∧ dy (Because dx ∧ dx = dy ∧ dy = 0.)

+ 1 dx ∧ dy ∧ dz (Because dy ∧ dy = dz ∧ dz = 0.)

+ 1 dy ∧ dz ∧ dx (Because dx ∧ dx = dz ∧ dz = 0.)

= 1 dx ∧ dy ∧ dz + 1 dx ∧ dy ∧ dz + 1 dx ∧ dy ∧ dz
(Since we make an even number of swaps each time.)

= 3 dx ∧ dy ∧ dz

Exercise 21. Here, ω is a 2-form. Remember the Hodge star operator we talked
about last time: ∗ω = (x+ez) dx+(y+cosh(xz)) dy+(z+cos(y)) dz. If we treat
this as a vector field, we can write ∗ω as f(x, y, z) = (x+ ez, y + cosh(xz), z +
cos(y)). Can you relate dω to f somehow?

Exercise 22. Let θ = 1 dx + sin(xz) dy + y dz + w dw, a 1-form on R4. Find
dθ.

Now, let’s work out what all the derivatives are on R3. We recall that
dimΩk(R3) =

(
3
k

)
, so 0-forms are 1-dimensional, 1-forms are 3-dimensional, 2-

forms are 3-dimensional, and 3-forms are 1-dimensional. We already know a
few differential operators on R3 – what number of dimensions do they operate
on? The gradient takes a scalar function and outputs a vector field, so we can
say it goes 1 → 3. The curl takes a vector field and produces a vector field,
so it goes 3 → 3. And finally, the divergence goes 3 → 1. So we might guess
that the gradient is d : Ω0 → Ω1, the curl is d : Ω1 → Ω2, and the divergence is
d : Ω2 → Ω3. Let’s prove this.

We already know that if ω = f is a 0-form, then dω corresponds to ∇f , so
the gradient is done. Now, let ω = f1 dx+ f2 dy + f3 dz. Then

12



dω = (f1x dx+ f1y dy + f1z dz) dx

+ (f2x dx+ f2y dy + f2z dz) dy

+ (f3x dx+ f3y dy + f3z dz) dz

= −f1y dx ∧ dy + f1z dz ∧ dx+ f2x dx ∧ dy − f2z dy ∧ dz − f3x dz ∧ dx+ f3y dy ∧ dz
= (f2x − f1y) dx ∧ dy + (f3y − f3z) dy ∧ dz + (f1z − f3x) dz ∧ dx

Which is just the Hodge star of ∇× (f1, f2, f3). So d on 1-forms is just the
curl! Now, let ω = f1 dy ∧ dz + f2 dz ∧ dx+ f3 dx ∧ dy. Then

dω = (f1x dx+ f1y dy + f1z dz) dy ∧ dz
+ (f2x dx+ f2y dy + f2z dz) dz ∧ dx
+ (f3x dx+ f3y dy + f3z dz) dx ∧ dy
= f1x dx ∧ dy ∧ dz + f2y dy ∧ dz ∧ dx+ f3z dz ∧ dx ∧ dy
= (f1x + f2y + f3z) dx ∧ dy ∧ dz

So d on 2-forms is just divergence! Overall, we can illustrate all of the
operators on R3 in a nice chart:

0
∇−→ 1

∇×−−→ 2
∇·−→ 3

Exercise 23. Write a similar diagramme for R4. You can name the operators
:) Hint: 0 → 1 and 3 → 4 are operators you already know.

Exercise 24. Prove the product rule for d: Let ω be a k-form on Rn and θ a
ℓ-form on Rn. Prove that d(ω ∧ θ) = dω ∧ θ + (−1)kω ∧ dθ.
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5 d2 = 0

Let’s recall a couple facts from multivariable calculus. Let f(x, y, z) be a scalar-
valued function. What is ∇× (∇f)?

Well, we can explicitly calculate it. We get:

∇× (fx, fy, fz) = (fzy − fyz, fxz − fzx, fyx − fxy)

But by Clairaut’s Theorem, we know that fxy = fyx, fyz = fy, fxz = fzx. So
∇× (∇f) = 0.

Similarly, if g(x, y, z) is a vector field, what is ∇ · (∇ × g)? Well, ∇ × g =
(g3y − g2z, g1z − g3x, g2x − g1y). Then

∇ · (∇× g) = ∇ · (g3y − g2z, g1z − g3x, g2x − g1y)

= (g3yx − g2zx) + (g1zy − g3xy) + (g2xz − g1yz)

= g3xy − g2xz + g1yz − g3xy + g2xz − g1yz (Clairaut’s Theorem)

= (g3xy − g3xy) + (g2xz − g2xz) + (g1yz − g1yz)

= 0

So once again, using Clairaut’s Theorem, we see that ∇ · (∇× g) = 0.
Now, let’s remember that last time, we discussed that in R3, we have 0 →

1 → 2 → 3, where the maps are 0
∇−→ 1

∇×−−→ 2
∇·−→ 3. So in the language of

differential forms, we showed that when f is a 0-form and g is a 1-form, we have
d(df) = 0 and d(dg) = 0. (Why is this? Explain this to yourself.) Similarly,
if we have ω a 2-form, then we must have d(dω) = 0, since dω is a 3-form and
d(dω) is a 4-form which must be 0. And again if θ is a 3-form, then d(dθ) = 0.
So overall, if we have any form ψ on R3, then d(dψ) = 0.

Theorem 4. For any differential form ω on Rn, d(dω) = 0.

Proof. Write ω =
∑
fI dxI . Then

d(dω) = d
(
d
(∑

fI dxI

))
(definition of ω)

= d

(∑
I

n∑
i=1

∂fI
∂xi

dxi ∧ dxI

)
(calculation of d)

=
∑
I

n∑
i=1

n∑
j=1

∂2fI
∂xixj

dxj ∧ dxi ∧ dxI (calculation of d)

Now, notice that both i and j go from 1 to n. So for any pair (i, j), we also
sum over (j, i). So let’s combine those terms. For simplicity I am just writing ?
for the summation condition – it is over pairs (i, j) with 1 ≤ i, j ≤ n, where we
treat (i, j) and (j, i) as the same. So we can write 1 ≤ i ≤ j ≤ n if we want.

14



d(dω) =
∑
I

n∑
i=1

n∑
j=1

∂2fI
∂xixj

dxj ∧ dxi ∧ dxI

=
∑
I

∑
?

∂2fI
∂xixj

dxj ∧ dxi ∧ dxI +
∂2fI
∂xjxi

dxi ∧ dxj ∧ dxI

(combining terms)

=
∑
I

∑
?

(
∂2fI
∂xixj

− ∂2fI
∂xjxi

)
dxj ∧ dxi ∧ dxI

(since dxj ∧ dxi = −dxi ∧ dxj)

=
∑
I

∑
?

0 (Clairaut’s Theorem)

= 0

So overall, we can write “d2 = 0.” Now that we proved that d2 = 0, a natural
question comes up: if dω = 0, then do we have ω = dθ?

Exercise 25. ∗ Find an example of a 1-form ω on R2 \{0} where dω = 0 but
there is no form θ with ω = dθ. Can we find an ω defined on all of R2?

The answer in general turns out to be very difficult! We will start talking
about this next week. It turns out that this question is related, somehow, to
counting holes in spaces. For example, R2 \{0} has a hole (at 0), so this is
possible, but R2 has no holes so it is impossible.

This is related to conservative vector fields: you may remember from multi-
variable calculus that on a simply-connected domain (a domain without holes),
F (x, y) is conservative if and only if F2x − F1y = 0. But if we treat F (x, y) as
a 1-form, ϕ = F1(x, y) dx+ F2(x, y) dy, then dϕ = F1y dy ∧ dx+ F2x dx ∧ dy =
F2x − F1y dx ∧ dy. So F (x, y) is conservative if and only if dϕ = 0. But a
conservative vector field F admits a potential function f with ∇f = F , and
in differential forms, we see that if F is conservative, then ϕ = df for some
function f . So overall, dϕ = 0 if and only if ϕ = df . The fact our domain was
simply-connected was crucial, and soon we will see a bit of why!

Exercise 26. Extend the previous argument to R3: prove that if ω is a 1-form
on R3 with dω = 0, then ω = df for some scalar-valued function f .
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6 Integration

6.1 Integrals

So far we’ve talked a lot about forms and their constructions, but not a lot about
why we care. We showed that differential forms encapsulate many of the tools
we know from multivariable calculus, but so far, we haven’t said anything about
arguably the most widely used tools in multivariable calculus: integration the-
orems. Today we will define integration of forms, and next time we will be able
to prove an incredible theorem called the Generalised Stokes’s Theorem, which
generalises the Fundamental Theorem of Calculus, Green’s Theorem, the Fun-
damental Theorem of Line Integrals, Stokes’s Theorem, and Gauss’s Theorem
(the Divergence Theorem) all at the same time. The biggest benefit of differen-
tial forms is that they allow us to take a so-called coordinate-free approach to
integration. We will see what this means momentarily.

Let ω be a n-form on Rn and U ⊂ Rn an open set. Let ω = f dx1∧· · ·∧dxn.
Then we define ∫

U

ω :=

∫
U

f dx1 dx2 . . . dxn

So far, this might be exactly what you’d expect.

Exercise 27. There is a subtle problem with our definition! We know by Fu-
bini’s Theorem that

∫
K
f dx1 dx2 . . . dxn =

∫
K
f dx2 dx1 . . . dxn (swapping the

order of integration between x1 and x2), but dx1 ∧ dx2 = −dx2 ∧ dx1!
Let σ be a permutation of 1, . . . , n. (Recall that a permutation of {1, . . . , n} is

just a bijective function {1, . . . , n} → {1, . . . , n}.) Then let ω = f dxσ(1) dxσ(2) . . . dxσ(n),
which is just our original ω but with the dx terms in a different order. Then∫

K

ω = (−1)p
∫
K

f dxσ(1) dxσ(2) . . . dxσ(n)

Calculate what p must be (in terms of σ) to make this true.

Our definition so far doesn’t let us integrate, say, over the sphere in R3, since
the sphere is 2-dimensional. If we integrate any 3-form over the sphere in R3,
the integral would just be 0 no matter what we integrate. So instead, we would
like to integrate a 2-form over the sphere, but the sphere can’t be placed into
R2, so we don’t know how to do this yet. The solution is, surprisingly, a change
of variables. First, we will define the change of variables for a n-form on Rn,
then we will show how it can be extended to allow integration of all forms.

6.2 Pullbacks

In order to define such a change-of-variables, let’s look at some examples we
know from single-variable calculus. Let ϕ(x) : R → R be given by ϕ(x) = 2x.
If we want to say u = 2x (a u-substitution), we would write u = ϕ(x), du =
dϕ(x) = ϕ′(x)dx. Then, as we know from calculus,
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∫
f(ϕ(x))ϕ′(x)dx =

∫
f(u) du

So this motivates our next definition: let ω be a 1-form – for simplicity, write
ω = f(x) dx. Then ϕ∗ω := f(ϕ(x))ϕ′(x) dx. If we assume that ϕ∗(α ∧ β) =
ϕ∗α∧ϕ∗β and ϕ∗(α+β) = ϕ∗α+ϕ∗β, then this is enough to define the pullback
of any k-form!

Formally, we can write out this definition.

Definition 6 (pullback). Let ϕ : Rn → Rn be a diffeomorphism: a smooth
function that has a smooth inverse. Then let ω be a k-form. Then we define the
pullback of ω by ϕ, denoted ϕ∗ω, as

ϕ∗ω :=
∑
I

(fI ◦ ϕ)dϕI

where we write dϕI := d(ϕi1) ∧ d(ϕi2) ∧ · · · ∧ d(ϕin).

Example 8. Let ϕ(t) = (t2, t−4) and ω = x dy−y dx. We can directly calculate
that ϕ∗ω = t2 dt− (t− 4) 2t dt = 8t− t2 dt.

Let’s recall how to compute a line integral. Let γ be the path given by γ(t) =
(t2, t− 4) for 0 ≤ t ≤ 1. Then

∫
γ

x dy − y dx =

∫
γ

(−y, x) · dr⃗

=

∫ 1

t=0

((−y, x) ◦ γ(t)) · γ′(t) dt

=

∫ 1

t=0

(4− t, t2) · (2t, 1) dt

=

∫ 1

t=0

8t− t2 dt

So when we calculated a line integral, we actually used the fact that

∫
γ

ω =∫ 1

0

γ∗ω. So our pullback really is a change-of-variables! (And in fact line inte-

grals are changes-of-variables from 2 variables to 1, just like a surface integral
is a change of variables from 3 to 2, etc.)

Exercise 28. Let S(u, v) = (u, v,
√
1− u2 − v2), and ω = x dy ∧ dz. Compute

S∗ω, and explain your answer in terms of a surface integral.

Example 9. Let ω = 1 dx dy and ϕ(x, y) =
(√

x2 + y2, arctan
(
y
x

))
. Then
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ϕ∗ω = (1 ◦ ϕ)dϕ1,2
= 1 dϕ1 ∧ dϕ2

= 1

(
∂ϕ1
∂x

dx+
∂ϕ1
∂y

dy

)
∧
(
∂ϕ2
∂x

dx+
∂ϕ2
∂y

dy

)
=

(
x√

x2 + y2
dx+

y√
x2 + y2

dy

)
∧
(

−y
x2 + y2

dx+
x

x2 + y2
dy

)
=

x√
x2 + y2

dx ∧ −y
x2 + y2

dx+
x√

x2 + y2
dx ∧ x

x2 + y2
dy

+
y√

x2 + y2
dy ∧ −y

x2 + y2
dx+

y√
x2 + y2

dy ∧ x

x2 + y2
dy

=
x√

x2 + y2
· x

x2 + y2
dx ∧ dy + y√

x2 + y2
· −y
x2 + y2

dy ∧ dx

=
x2

(x2 + y2)3/2
dx ∧ dy − y2

(x2 + y2)3/2
dy ∧ dx

=
x2 + y2

(x2 + y2)3/2
dx ∧ dy

=
1√

x2 + y2
dx ∧ dy

If we write (r, θ) = ϕ(x, y) as our new coordinates, then we can define dr ∧
dθ = ϕ∗(dx∧dy), so we see that dr∧dθ = 1

r dx∧dy, or that r dr∧dθ = dx∧dy.

Exercise 29. Fun fact! We just implicitly showed a very important fact (in
R2): if we have a function f : Rn → Rn, then df1,2,...,n = df1 ∧ df2 ∧ · · · ∧
dfn = det Jac(f) dx1 ∧ · · · ∧ dxn, where Jac(f) is the Jacobian matrix of f ,
Jac(f)ij =

∂fi
∂xj

. Prove this fact.

Exercise 30. Let ω = x dx + y2 dy and θ = z dx ∧ dy + x dy ∧ dz + y dz ∧ dx,
and ϕ(x, y) = (x + y, x − y) and ψ(x, y, z) = (x sin y cos z, x sin y sin z, x cos y).
Find ϕ∗ω and ψ∗θ.

Exercise 31. Let ω, η be k-forms on Rn and c ∈ R. Let f : Rn → Rn be a
diffeomorphism. Using the formal definition of the pushforward we gave, prove
the following.

1. f∗(cω) = cf∗ω

2. f∗(ω + η) = f∗ω + f∗η

3. f∗(ω ∧ η) = f∗ω ∧ f∗η

4. f∗(dω) = d(f∗ω)
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Exercise 32. ∗ Prove the change-of-variable theorem: Let ω be a n-form
on Rn, U, V ⊂ Rn open, and ϕ : U → V a (orientation-preserving) diffeomor-
phism. Then ∫

V

ω =

∫
U

ϕ∗ω.

6.3 Chains

Now we need one more important definition. A k-chain of length p in Rn is
a collection of diffeomorphisms {ϕi}pi=1 : Dk → Rn7. We write Dk for the open

disk in Rk – we could also choose the open unit cube, the open unit simplex,
etc. Any shape that we can easily integrate over is fine.

Photo Credit: RobHar on Wikimedia Commons.

7We need a condition on the intersections, but we will ignore this for now. This is a key
part of the definition of a manifold which we are trying to avoid.
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Example 10. The unit sphere in R3 is a 2-chain of length 2. In the above,
we can pick a diffeomorphism ϕ1 that takes the unit disk in R2 to the region
marked by A, and a diffeomorphism ϕ2 that takes the unit disk in R2 to the
region marked by B. This covers the unit sphere, making it a 2-chain of length
2.

We can explicitly write the maps: ϕ1(x, y) = (x, y,
√
1− x2 − y2) and ϕ2(x, y) =

(x, y,−
√
1− x2 − y2). Keep in mind that the top and bottom “hemispheres” are

oriented in the opposite direction.

Now, we can finally define our integral. Let C = {ϕi}pi=1 be a k-chain of
length p in Rn, and ω a k-form on Rn. Then we define∫

C

ω :=

p∑
i=1

∫
Dk

ϕ∗iω.

Example 11. Let’s integrate ω = y dx ∧ dz over the unit sphere. We already
discussed that the unit sphere is a 2-chain of length 2, so

∫
S2

ω =

∫
D2

ϕ∗1ω +

∫
D2

ϕ∗2ω

=

∫
D2

(y ◦ ϕ1) · (d(ϕ1)1 ∧ d(ϕ1)3) +
∫
D2

(y ◦ ϕ2) · (d(ϕ2)1 ∧ d(ϕ2)3)

=

∫
D2

y ·

(
(1 dx+ 0 dy + 0 dz) ∧

(
− x√

1− x2 − y2
dx− y√

1− x2 − y2
dy + 0 dz

))

−
∫
D2

y ·

(
(1 dx+ 0 dy + 0 dz) ∧

(
x√

1− x2 − y2
dx+

y√
1− x2 − y2

dy + 0 dz

))
(The minus sign is because of the difference in orientation.)

=

∫
D2

−2
y2√

1− x2 − y2
dx dy

= −2

∫
D2

y2√
1− x2 − y2

dx dy

= −2

∫∫
D2

y2√
1− x2 − y2

dx dy

= −2

∫ 2π

θ=0

∫ 1

r=0

(r sin θ)2√
1− r2

r dr dθ

= −2

∫ 2π

θ=0

sin2 θ

∫ 1

r=0

r3√
1− r2

dr dθ

This we can directly integrate (let u = r2), and we get −4π

3
.
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Exercise 33. Calculate

∫∫
S2

(0, y, 0) ·dS⃗. Does this value match the answer we

just calculated? Why or why not?

Exercise 34. Let the unit (hollow) cube C in R3 be a 2-chain of length 6 (one
for each side). Using the above method, compute∫

C

x dy ∧ dz
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7 Stokes’s Theorem

One of the most important and useful tools in calculus is integration theo-
rems. You know a lot of them: Fundamental Theorem of Calculus, Fundamen-
tal Theorem of Line Integrals, Green’s Theorem, Stokes’s Theorem, Divergence
(Gauss’s) Theorem. But based on what we’ve seen so far, they can actually
all be rephrased into one theorem: the Generalised Stokes’s Theorem (I am not
sure why it is just called Stokes’s). It is also sometimes called the Stokes-Cartan
Theorem.

Let’s think about Stokes’s Theorem (the one you know) for a moment. Let

S be a surface in R3 and F⃗ a vector field. Then Stokes’s Theorem says that∫∫
S

∇× F⃗ =

∮
∂S

F⃗

Now, let V be a volume in R3. The Divergence Theorem tells us that∫∫∫
V

∇ · F⃗ =

∫∫
∂V

F⃗

These theorems look quite similar. We have previously mentioned two facts
that will help us make sense of these results: first, we can only integrate a k-form
on a k-dimensional surface. Second, curl is just d one one-forms and divergence
is just d on two-forms. So together, we can rewrite these results: let ω be a
1-form on Rn corresponding to F⃗ and θ a 2-form corresponding to ∗F⃗ . Then∫

S

dω =

∫
∂S

ω∫
V

dθ =

∫
∂S

θ

Notice that these equations are exactly the same now! And we can wrap them
up into one theorem:

Theorem 5 (Stokes-Cartan Theorem). Let S ⊂ Rn be a k-dimensional surface
with boundary ∂S, and ω a (k − 1)-form on Rn. Then∫

S

dω =

∫
∂S

ω

The proof of this theorem is a little bit technical, but we can sketch the basic
idea.
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Photo credit: Krishnavedala.
The above diagramme is for 2 dimensions, but we can consider it in higher

dimensions with a suitable tiling. The idea is that integrating over a region
can be reduced to the boundary by creating a tiling. Each internal edge of
the squares is gone over once in each direction, which will cancel out. So we
can say that integrating our form over any tiling of squares is the same as just
integrating it over the boundary. And as the squares get smaller and smaller,
the value from going around each square approaches the derivative of ω at that
point. So integrating dω over the entire region should equal integrating ω over
just the boundary.

Exercise 35. For each of the calculus theorems (Fundamental Theorem of Cal-
culus, Fundamental Theorem of Line Integrals, Green’s Theorem, Stokes’s The-
orem, Divergence (Gauss’s) Theorem), rewrite them in terms of the Stokes-
Cartan Theorem with an appropriate choice of form. Recall that for a directed
line ℓ with endpoints ℓ0 and ℓ1, ∂ℓ = ℓ1 − ℓ0.
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8 Cohomology (Santiago (Go) Gonzalez)

8.1 Motivations of (Co)homology

Surprisingly, the language of differential forms is not only confined to the study
of calculus. Instead, it finds a place in the study of topology and the equivalence
of “shapes”.

The homology and cohomology of a topological structure provides mathemati-
cians a way to number and identify the number of holes that such a structure
has. In fact, these tools help shed some light as to why a coffee mug and a donut
are “the same”, at least according to mathematicians. Now, we will shift our
focus to defining the de Rham cohomology in terms of closed differential forms
and exact differential forms.

Definition 7 (closed form). A differential form ω is closed if dω = 0.

Example 12. ydx+ xdy is closed: d(y dx+ x dy) = 1 dydx+ 1 dxdy = 0.

Definition 8 (exact form). A differential form ω is exact if there exists a k−1
form θ such that ω = dθ.

Example 13. Consider ω = 2x dx+ 2y dy. It is easy to verify that ω is exact
by considering θ = x2 + y2: dθ = 2x dx+ 2y dy.

Lemma 1. A quick lemma coming from Definition 5 is that all exact forms
must also be closed (Can you see why? Hint: go back to Chapter 5).

8.2 Defining the de Rham Cohomology

While the following can be defined more generally on manifolds with only a
little more extra legwork, we will only be caring about defining the de Rham
cohomology group in n-dimensional Euclidean space (despite its name, the de
Rham cohomology group is actually a vector space over R8).

Take a look back at Exercise 15 now and look at what the question is asking. We
already know that all exact forms are closed, but the exercise asks us whether
or not all closed forms are exact. The answer is no, and the de Rham cohomol-
ogy gives us a way to classify these without having to guess and check every time.

Now, for our last two definitions before the main event. For both of these,
assume that we are working in Rk and let p ∈ Z+.

Definition 9. Zp = Ker(d : Ωp(Rk) → Ωp+1(Rk) = {closed p forms on Rk}

Definition 10. Bp = Im(d : Ωp−1(Rk) → Ωp(Rk) = {exact p forms on Rk}
8Comment from Max: vector spaces are abelian groups :)
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In case the definitions seem to come out of nowhere, remember that the kernel
describes all elements which map to 0 (or closed forms), and the image of p− 1
forms to p forms is the set of exact p forms). Finally, note that since every exact
form is closed, we have that Bp(Rk) ⊆ Zp(Rk)

Now, it is finally time for the definition of the de Rham cohomology:

Definition 11 (de Rham Cohomology Group of Degree p). We define the de
Rham Cohomology Group of Degree p to be the quotient vector space Hp

dr(R
k) =

Zp(Rk)

Bp(Rk)
. We say that Hp(Rk) = 0 for p < 0 or p > dim(Rk) as Ωp(Rk) = 0

for those cases. Otherwise, we say that Hp(Rk) = 0 if and only if Zp(Rk) =
Bp(Rk).

Before we get to the fun part of counting holes in space, there is a bunch more
background that is needed. We will forsake this background and instead present
it in a swift manner without proof. The theorems (with proof) may be found
in Chapter 17 of Lee’s Intro to Smooth Manifolds.

Theorem 6. If M and N are homotopy equivalent smooth manifolds with or
without boundary, then Hp(M) ∼= Hp(N) for each p. The isomorphisms are
induced by any smooth homotopy equivalence F :M → N .

Corollary 1. The de Rham cohomology groups are topological invariants: if
M and N are homeomorphic smooth manifolds with or without boundary, then
their de Rham cohomology groups are isomorphic

Theorem 7. For n ≥ 1, the de Rham cohomology groups of Sn are

Hp(Sn) ∼=

{
R if p = 0, n

0 if 0 < p < n

Ignoring the jargon about manifolds, what the above basically tells us is that
the cohomology of topological structures which are homeomorphic (i.e. two
objects that can be transformed into each other without ”ripping”) is the same!
They also tell us the same for objects which are homotopy equivalent (for now
just think of this as a weaker notion of homeomorphic). Now, we are ready to
calculate holes mathematically!

8.3 Calculating Cohomology of R2 \{(0, 0)}
Example 14. Calculate H1(R2 \{(0, 0)})

First, note that there exists R2 \{(0, 0)} is homotopy equivalent to S1, the circle.
The proof of this (along with the rigorous definition of what it means to be
homotopy equivalent) will be left as an exercise for the reader. For now, just
think that the punctured plane R2 \{(0, 0)} has exactly one hole (the origin)
while S1 the circle also has one hole. So, by the above theorem, we see that
H1(R2 \{(0, 0)}) ∼= H1(S1) ∼= R. Well that was anti-climactic... Unfortunatley,
most of the legwork behind proving the cohomology of more interesting spaces
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is far outside of the reach of this directed reading project. However, if the reader
is curious to look at more, Lee’s Intro to Smooth Manifolds provides some prime
examples along wit rigorous proof for everything covered here in Section 8.

Definition 12. A homotopy between two continuous functions f and g from
topological spaces X and Y is defined to be a continuous function H : X×[0, 1] →
Y such that for all x ∈ X H(x, 0) = f(x), H(x, 1) = g(x).

Definition 13. Two topological spaces X and Y are said to be homotopy equiv-
alent if there exists a pair of continuous maps f : X → Y , g : Y → X such that
g ◦ f is homotopic to idX and f ◦ g is homotopic to idY

Exercise 36. Show that R2 \{(0, 0)} is homotopy equivalent to S1
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9 Application to Liouville’s Theorem of Hamil-
tonian Mechanics (Nick Wojnar)

9.1 Introduction to the Hamiltonian

9.1.1 Defining the Hamiltonian

Consider a system with generalized coordinates {q, q̇}. Given the kinetic energy
T and the potential function V, we can write the Lagrangian of the system.

L(q, q̇, t) = T−V

Recall that we define the generalized momenta pi of the system as follows:

pi =
∂L
∂q̇i

We now define the Hamiltonian H. Note that we change our coordinates from
{q, q̇} → {q,p}

H(q,p, t) =
∑
i

piq̇i − L(q, q̇, t)

We can demonstrate that this quantity satisfies Hamilton’s Equations.

∂H
∂pi

= q̇i(q,p, t)

∂H
∂qi

= −ṗi

∂H
∂t

=
dH
dt

9.1.2 Phase-Space

While the Lagrangian describes the evolution of generalized coordinates over
time, the Hamiltonian’s equations describe the time-evolution of a different
phase-space with coordinates {q,p}, which we can then transform into the
equations of motion of the system, i.e. we can explicitly solve for q(t). This
formulation offers interesting geometric features, including Lioville’s Theorem.

Consider a simple mass-spring system with generalized coordinates {x, ẋ},
where m = k = 1. We can find the Lagrangian and generalized momentum of
the system to define the Hamiltonian.

L =
1

2
ẋ2 − 1

2
x2

H(q,p, t) =
∑
i

piq̇i − L(q, q̇, t)

= pẋ− (
1

2
ẋ2 − 1

2
x2)

=
1

2
(p2 + x2)
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Figure 1: Phase-Space Plot for a series of 4 particles with initial position and/or
momentum. This specific evolution arises due to free particles in gravity.

Since this H is not explicitly time-dependent, it can be treated as a constant
with respect to time. As such, we can plot a phase-space diagram of this system.
As we can tell, it will be a circle of radius

√
2H, and we can use the Hamiltonian

equations to determine that the circle is oriented clockwise.

Exercise 37. Find the Hamiltonian for a mass m at the end of a simple pen-
dulum of length l that makes an angle θ with the vertical. Take the top of the
pendulum to be the origin.

9.2 Liouville’s Theorem

9.2.1 The Statement

Consider a closed region S in a 2n-dimensional phase space, i.e. a space with n
particles with position and momentum in one space dimension. Call the volume
of the enclosed region V, and allow the region to move through phase space
according to Hamilton’s equations. Liouville’s Theorem states that the total
volume enclosed in our region will remain constant over time, namely that

dV
dt

= 0

Figure 1 demonstrates the evolution of a region S from t = 0 to t = 1, with
a 2-volume (area) of V0 to V1. One can show numerically that V0 = V1 given
the exact equations of motion. We can show that this will hold for any region
with any Hamiltonian.
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9.2.2 Proof

We define the (2n − 1)-form current flow through phase space v as the time
derivative of our position in phase space.

v =
d

dt
(q,p)

v = (

n∑
i=1

q̇i · dQi + ṗi · dPi)

Where I define:

dQi = dq1 ∧ ... ∧ dqi−1 ∧ dqi+1 ∧ ... ∧ dqn ∧ p1 ∧ ... ∧ pn
dPi = dq1 ∧ ... ∧ dqn ∧ p1 ∧ ... ∧ dpi−1 ∧ dpi+1 ∧ ... ∧ pn

The change in volume over time can be pictures as small changes along the
boundary according to the current flow. That is:

dV
dt

=

∮
∂S

v · ds

And written as a differential form:

dV
dt

=

∫
∂S

v

By Stoke’s Theorem:

dV
dt

=

∫
S
dv

=

∫
S

n∑
i=1

(
∂q̇i
∂qi

+
∂ṗi
∂pi

)dq1 ∧ ... ∧ dqn ∧ p1 ∧ ... ∧ pn

This is simply the divergence of v. By Hamilton’s equations, we can find:

∂q̇i
∂qi

+
∂ṗi
∂pi

=
∂

∂qi
(
∂H
∂pi

) +
∂

∂pi
(−∂H

∂qi
)

=
∂2H
∂qi∂pi

− ∂2H
∂pi∂qi

= 0

Therefore, we achieve our result,

dV
dt

=

∫
S

n∑
i=1

(0)dq1 ∧ ... ∧ dqn ∧ p1 ∧ ... ∧ pn

=

∫
S
0dq1 ∧ ... ∧ dqn ∧ p1 ∧ ... ∧ pn

= 0

thus proving Liouville’s Theorem.
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Exercise 38. Verify that Liouville’s Theorem holds for particles in free-fall, as
represented in Figure 1.
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10 Solutions

10.1 Exercise 11 (Max)

It is just the Kronecker product v ⊗ w =

(
ev fv
gv hv

)
=


ae be af bf
ce de cf df
ag bg ah bh
cg dg ch dh

.

10.2 Exercise 18 (Nick)

Assume that there exists some ω′ = ω such that ω′ =
∑

vi
gi(x)vi.

ω = ω′

ω − ω′ = 0∑
vi

fi(x)vi −
∑
vi

gi(x)vi = 0∑
vi

(fi − gi)(x)vi = 0

=⇒ fi − gi = 0

fi = gi

Since {vi} is a basis, each vi is linearly independent, so the relation fi − gi = 0
must hold for all i. This means that fi = gi for all i, so ω and ω′ must be the
same.

10.3 Exercise 9 (Nick)

I will omit the wedges for conciseness. Consider θ a 1-form on R3 spanned by
{x, y, z}. The most general θ is as follows:

θ = f1(x, y, z)dx+ f2(x, y, z)dy + f3(x, y, z)dz

One example of ϕ a 2-form:

ϕ = g1,2dxdy + g2,3dydz + g3,1dzdx

One example of ψ a 3-form:

ψ = h1,2,3dxdydz

10.4 Exercise 10 (Nick)

Let θ = f1dx+ f2dy + f3dz and ω = g1dxdy + g2dydz + g3dzdx.

θ ∧ ω = (f1g2 + f2g3 + f3g1)dxdydz

In this calculation, it is important to note that any repeats (dx ∧ dxdy) are all
equal to zero.
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10.5 Exercise 13 (Nick)

Consider a 0-form ω0 = f(x) on R4. Then dω0 =
∑

i
∂f
∂xi

dxi. This is just the
gradient of f .

Consider a 1-form ω1 = f1dx1 + f2dx2 + f3dx3 + f4dx4.

dω1 =
∑
i

∑
j

∂fj
∂xi

(dxj ∧ dxi)

=
∑
i<j

(
∂fi
∂xj

− ∂fj
∂xi

)dxi ∧ dxj

This looks a lot like the curl in R3! For this exercise, I want to call it the 2-curl
since it is a 2-form where each dxidxj has two terms.

Consider the 2-form ω2 =
∑

i,j gi,jdxidxj .

dω2 =
∑
i,j,k

(
∂gi,j
∂xk

− ∂gj,k
∂xi

+
∂gk,i
∂xj

)dxidxjdxk

I will call this the 3-curl (I know, not very creative). It’s a pretty big hassle to
expand this out.

Predictably, the exterior derivative of ω3 a 3-form will just be its divergence.

10.6 Exercise 15 (Nick)

Consider ω = − y
x2+y2 dx+

x
x2+y2 dy. Then, dω = (x2−y2)+(y2−x2)

(x2+y2)2 = 0. We might

think that θ = − arctan(x/y); however, this is undefined for all y = 0. So, θ is
a 0-form on R2 \ {(x, y)|y = 0}. This domain is different from ω :(

10.7 Exercise 26 (Go)

Define f : R2 \{(0, 0)} → S1 such that f(x, y) =

(
x√

x2+y2
, y√

x2+y2

)
. Now, set

g : S1 → R2 \{(0, 0)} where g(x, y) = (x, y). Here, f is the projection map onto
the circle whereas g represents the inclusion map of S1 onto R2 \{(0, 0)}. Now,
it is time to check that their compositions are homotopic to idX and idY .

Define H((x, y), t) = (1− t)(f ◦ g)(x, y)+ t(x, y) = (1− t)(x, y)+ t(x, y). This is
because on S1, x2 + y2 = 1, so we can simplify f ◦ g = (x, y). Now, we see that
H((x, y), 0) = (x, y) = f ◦ g(x, y) and H((x, y), 1) = (x, y), the identity map on
S1. Hence, f ◦ g is homotopic to the identity map on S1.

Now, we check for the punctured plane. Define G((x, y), t) = ((1 − t)x +
t x√

x2+y2
, (1 − t)y + t y√

x2+y2
). I leave it to the reader to verify, but we see

that indeed g ◦ f is homotopic to the identity map on R2 \{(0, 0)}. Thus, we
have shown that R2 \{(0, 0)} and S1 are homotopy equivalent!
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