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1 Tame and Wild Quivers

For our talk we fix K an algebraically closed field. There is a vast amount of
material to cover today so I will be skipping many details and calculations (and
even entire topics) when necessary. If there is time at the end I will touch on
some things I skipped.

1.1 Definitions

Definition 1 (tame quiver). We say a connected quiver @ is called tame if for
any v € Zi, the set of isomorphism classes of indecomposable representations
of graded dimension v is the union of a finite number of one-parametre families
and a finite number of isolated points.

This is a significant loosening of the condition of finite type — clearly every finite
type quiver is tame but the reverse is not true:

Example 1. The Jordan quiver is tame but not of finite type. We proved
previously that the Jordan quiver is not of finite type, but it is tame: for any
dimension d we have precisely one one-parametre family of ireducible represen-
tations: Jy (the Jordan block of size d and eigenvalue A for any A € K ).
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Example 2. For the Kronecker quiver, we have shown in an earlier talk that
when v = (1,1) our set of indecomposable representations is parametrised by P!
(which can be thought of as a one-parametre family union a point). We will see
later that this quiver is in fact tame.
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Example 3. For the double loop quiver, we can easily show it is not tame:
its path algebra is K{x,y), the polynomial algebra in two noncommuting vari-
ables. Classifying its irreducible representations is the same as classifying pairs



of square matrices up to conjugation. This is evidently not tame, as even in
the case d = 1 we are choosing pairs of scalars A1, o € K which is not a
one-parametre family.
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The double loop quiver is a classical example of a non-tame quiver. In fact, we
will define a quiver as wild if its irreducible representations cannot be classi-
fied without already classifying the representations of the double loop quiver.
Formally,

Definition 2 (wild quiver). Let D be the double loop quiver with path algebra
D = K(z,y). We say an associative algebra A is wild if there is a functor
F : Rep(D) — Rep(A) satisfying the following two properties:

1. For any X € Rep(D), F(X) is indecomposable as a representation of A iff
X is indecomposable as a representation of D, and for any X,Y € Rep(D),
FX)~FY)iff X ~Y.

2. There exists a A, D-bimodule M for which F(X) = M ®p X, which is free
and finitely generated as a right D-module.

We say a connected quiver C} s wild if its path algebra is wild.

Every fully faithful functor satisfies the first condition, and every functor we
use will satisfy the second condition (it is rather technical and we will not get
into the details of what it says). As we mentioned before the definition, we are
really saying that a quiver is wild if it “contains” the double loop quiver in its
representations, for a suitable definition of “contains”.

1.2 Tame-Wild Dichotomy

It is clear that a wild quiver cannot be tame, as the prototypical wild quiver
contained in every wild quiver is not tame. But it is not clear that every quiver
that is not tame is wild.

Theorem 1 (Drozd 1980). Any algebra that is not tame is wild.

The proof of this fact is outside of the scope of this talk, but it provides a very
important dichotomy in the representations of quivers: every quiver is either
tame or wild (and not both). This is important because (as we will see later) the
representations of tame quivers are easier to work with, and this theorem tells
us that every other quiver shares a particular complication. Similar to Gabriel’s
Theorem that we proved in previous talks, we have a very nice classification
of tame quivers in terms of the Tits form. Recall that a quiver is said to be
Dynkin if the Tits form is positive-definite and FEuclidean if the Tits form is
positive-semidefinite.



Theorem 2. A connected quiver C} is tame if and only if the underlying graph
Q is Dynkin or Euclidean.

In particular a tame but not finite type quiver (such as the Jordan quiver) is
Euclidean but not Dynkin. For the rest of the talk, we will introduce a variety
of technologies that will come together in a proof of this statement. We will give
a high-level sketch of the necessary pieces and show how they come together to
prove this theorem, as well as explain why tame quivers are particularly nice in
their representations.

2 Affine Root Systems

Now that we have introduced the main concepts we are going to investigate,
we will now develop some technology needed in our investigation. Let Q be
a connected Euclidean quiver. If Cj has oriented loops, it is a cyclic quiver
(example shown below), which can be analysed explicitly. We will not do so for
time.
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Thus, we can assume Q has no oriented cycles (so it is also not the Jordan quiver,
which we have proved is tame already anyway). As we have done before, let
L = Z! be the root lattice of § and (=, —) be the symmetrised Euler form.
Let {c;}ier be the standard basis of L and W be the Weyl group generated by
s;, the simple reflections. The following construction will be completely black-
boxed because developing it fully would take too much time and we will only
need it for one result.

There is a Kac-Moody Lie algebra g(Q) such that L is the root lattice of
9(Q) and W is the Weyl group of g(@). For a Euclidean quiver Q. 9(Q) is
an untwisted affine Lie algebra. If you took Math 216A with Raphael in the
Fall, this is the same construction we used, starting from the generalised Cartan
matrix generated from Q This construction will be completely black-boxed for
the purposes of this talk, but the result we obtain from it will not need any of
the details involved.

e — 0
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Lemma 1. Let R denote the roots of g(Q), and R™, R'™ denote the real, imag-
inary (respectively) roots. Then R™ = {a € L\ {0}|(o,a) = 2}, R"™ = {a €
L\ {0}(v, o) = 0}.

We can do better than this and explicitly describe our real and imaginary roots.
Fix some iy so that Q; := @ \ {ip} is a connected graph. We call this iy an
extending vertez. Then denote L; = Z! Mo} and denote the corresponding root
system Ry and Weyl group Wy. We note that Qs is Dynkin, so Ry, Wy are
finite. Recall that there is some § € R, that generates the radical of (—, —).



Theorem 3 (Kac 1990). For any extending vertez iy,
1. R ={a+nd|la € Rg,n € Z} and R™ = {nd|n € Z,n # 0}.

2. Given o € Ly, we can define 7,(z) := x + (o, x)0 which is an automor-
phism L — L. Then set T = {ro|la € Ly} = Ly so that W = Wy x T.

3. Ywe W, w(s) = 4.

2.1 Affine Coxeter Element

Let r = |I| — 1, the number of vertices of Qf =@\ {io}. Let C be the Coxeter
element of W. Unlike the Dynkin case, C' may not have finite order and may
be less well-behaved. But we do have the following result:

Theorem 4. We have

1. some g >0 so that C9 € T.

2. Ca = «a iff a =nd, for roots a.

Definition 3. Let g, A be so that C9 = 7. For any o € L, we define its defect
0(a) == (a, \) € Z, so that C9I(a) = a+ I()6.

When V is a representation of Q, we say d(V) := 8(dim V).
Theorem 5. Let o € Ry. Then

1. 9(a) <0 <= CNa e R_.YN >0

2. 9(a) >0 &= CNaeR.YN>0

3. 9(a)=0 <= Cla=a

For any k = 0,...,r, define py = s4,...5;,(0;,) and qx = s, ... 85, (@, )-
Then Cpr = —qr. We will not need this, but these roots are relevant because
da) <0 < CNa € R.YN >0 < a= C "p; for some n > 0, and
similarly d(a) >0 < CNa€ R_YN >0 < o= C"g; for some n > 0.



Example 4.

Example 7.15. Consider the Kronecker quiver:
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Then the corresponding root system is given by

R™ ={+m +nd, ne L},
Rim™ = {nd,n # 0},

where & = ap + o (see Figure 7.2).
affine Lie algebra sla.
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This is exactly the root system of the
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Figure 7.2. Root system A, and the action of the affine Coxeter element C.

The Coxeter element is €' = spsp (it is chosen to be adapted to the
quiver Q). It acts on the root lattice by

Clevy) = o + 24,

C(n‘}g] = ¥y — 215

C(8) = 4.

Comparing it with the definition of defect, we see that in this case g = 1,

M) = 2, ag)

Po =
g0 = s1(c) = g + 200,

—2. The roots p;, g; defined by (7.2) are

= spla1) = a1 + 2ag,

i1 = k).




2.2 Preprojective, Preinjective, and Regular Representa-
tions

Recall that we have introduced the Coxeter endofunctors C* on Rep(@)7 and
defined certain classes of representations in terms of them. Given an indecom-
posable representation V' of ), we say V is

1. preprojective, if (CT)*V = 0 for n > 0.
2. preinjecive, if (C7)"V =0 for n > 0.
3. regular, (C™)"V #0,(CH)"V # 0Vn € Zso.
We have a similar classification for positive roots: we say aw € R is
1. preprojective, if C™« % 0 for some n > 0.
2. preinjecive, if if C™« % 0 for some n < 0.
3. regular, if C™"a > 0 for any n € Z.

We know that if « is a positive root, then it is preprojective iff 9(a)) < 0, prein-
jective iff 9() > 0, and regular iff () = 0. Then, using the bijection between
preprojective roots and preprojective representations that Sam mentioned last
time (and similar for preinjective), we arrive at the following result.

Theorem 6. Let I be an indecomposable representation of Q Then I is
1. preprojective if I(I) < 0
2. preinjective if 9(I) > 0
3. reqular if 0(I) =0
Further, for any positive root a with 9(«) # 0, we have a unique (up to isomor-

phism) indecomposable representation I on with dim(I) = a, with I prepro-
jective if O(a)) < 0 and I preinjective if O(a) > 0.

In particular, we have a bijection

{preprojective and preinjective representations of Q} / =~

o~

{positive roots o € R|0(«x) # 0}

so we have a complete classification of preinjective and preprojective represen-
tations. The last step is to classify regular representations. The real under-
standing behind our classification of regular representations comes from McKay
correspondence and subgroups of SU(2), but unfortunately there are not enough
weeks in the quarter to devote a talk to that topic. So we will give a sketch of
the ideas behind the classification.
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We have a full subcategory R(Q) (which is an abelian category closed un-
der extensions) of Rep(@) consisting of regular representations of Cj, which is
equipped with endofunctors C* and C~, which are autoequivalences by defini-
tion of regular representations. Thus, it makes sense to consider the C*-orbit
of a simple regular representation. Fix X a simple regular representation of Q,
and O := {X,CTX,...,(CH)!=1(X)}, where [ is called the period of X — the
minimal positive integer so that (C*)!X = X. Such an integer always exists.

—

Given an orbit O of X, we define Rp as the full subcategory of R(Q) given by

V € R(Q) where the composition series of V' contains only elements of O. We
define the tube of O as the set of all indecomposables in Ro.

Theorem 7. We have
1. a bijection P! = {tubes of Q}

2. the set of tubes of period greater than 1 is finite.

3 Conclusion

3.1 Euclidean Quivers are Tame

Theorem 8. Let @ be a connected Euclidean quiver that is not the Jordan
quiver, and R its root system.

1. An indecomposable representation of Cj of dimension v € L exists if and
only if ve Ry.

2. For any real positive oot «, the indecomposable representations of Q of
dimension o is unique up to isomorphism

3. There is a finite subset D = {p1,...,pr} C P! and a collection of inte-
gers l, > 1,p € D so that for any positive imaginary root o = nd, the
set of isomorphism classes of indecomposable representations of Cj with
dimension o is in bijection with the set

®'\Dyu |z,

peED

Proof. First assume @ is such that the extending vertex is a sink and let & € R
a positive real root. We will first show there is exactly one indecomposable
representation of @ with dimension a. If d(a) > 0, then there is a unique
preinjective representation (up to isomorphism) of dimension «. If 9(a) <
0, then there is a unique preprojective representation (up to isomorphism) of
dimension a. Now, if « is an arbitrary positive root that is not real, we must
have 9(a) = 0. So we are dealing with regular representations. We know the set
of greater-than-period-1 tubes is finite, so denote its image under the bijection



in P! by D. Then we have a bijection between regular representations and
(P*\ D)U U Z,.
peD
Then, if iy is not necessarily a sink, we note the other cases are that either @
is a cyclic quiver (example below) or ig is a source. The proof for cyclic quivers
is very straightforward but we will omit it for time. If iy is a source, we simply
apply the reflection functor and then use the previous argument.

|
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Corollary 1. All Euclidean quivers are tame.

When combined with the fact we are about to prove (that all non-Euclidean
quivers are wild) this theorem also provides a complete classification of the
indecomposable representations of tame quivers.

3.2 Non-Euclidean Quivers are Wild

We will actually prove a slightly stronger statement: non-Euclidean quivers are
strongly wild, which, as the name implies, is (strictly) stronger than wild. We
will slightly depart from the book in an attempt to spend less time on technical
details.

Definition 4. Let Q and Q' be quivers. We say Rep( ) C Rep(Q') (“Rep(Q)
embeds in Rep(Q')”) if there is a functor T : Rep(Q) — Rep(é') such that:

1. T is fully faithful.

2. There exists a kQ', kQ-bimodule M for which TV)=M @V, which is
free and finitely generated as a right k@—module.

Deﬁnit_ipn 5. Recall that we deno_}fe D as tiie double loop quiver. We say a
quiver Q is strongly wild if Rep(D) C Rep(Q).

Given our definition of strongly wild, it is immediate that every strongly wild
quiver is wild. Let’s quickly look at some results we will need to prove that
every non-Euclidean quiver is strongly wild (and hence wild).

Lemma 2. The tadpole quiver T is strongly wild (for any orientation).

D
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Lemma 3. Let QE be a Euclidean quiver. Then Rep(J) C Rep(QE). where J
is the Jordan quiver.

Lemma 4. FEvery connected nontrivial non-Euclidean quiver Q) contains a non-
trivial Euclidean quiver QF as a proper subquiver.

Now, finally, we can finish our proof that a quiver is tame if and only if it is
Euclidean.

Theorem 9. If@ is a connected quiver that is not Euclidean or Dynkin, then
Q is strongly wild and hence wild.

Proof Consider QE the nontrivial Euclidean quiver that is a proper subquiver
of Q Since QE is a proper subquiver, there is either a vertex i € Q that is not
in QE or an edge h € Q that is not in QE. We split into cases:

1. There is a vertex i € Cj that is not in @E . Then consider the embedding
Rep(j) C Rep(QE). Since @ is connected, there must be at least one
edge involving ¢ that starts or ends in @E . Thus, we can extend our
representation of .J to a representation of the tadpole quiver by considering
this edge involving ¢, which shows Rep(T') € Rep(Q). Since T is strongly
wild, we see Q is as well.

2. There is an edge h € Q that is not in QE, but all vertices of C_j are the
same as Q. Then similarly, our embedding Rep(J) C Rep(QF) extends

to an embedding Rep(l_j) - Rep(@), so by definition Q is strongly wild.
O
Corollary 2. Let C} be a connected quiver.
1. If Q 18 Dynkin, it is of finite type and tame.
2. If@ is Buclidean and not Dynkin, it is tame and not of finite type.

3. If Q is not Fuclidean or Dynkin, it is wild.



