
Split Semisimple Groups

Max Steinberg

8 March 2023

1 Split Semisimple and Split Reductive Groups

Throughout, we fix some arbitrary field F . Our goal today will to be continue
with what Jas told us about last week, by introducing split semisimple groups,
some of the motivations and results behind them, and ultimately classifying
them. The end goal is to demonstrate a method of classifying split simple
groups and explain the motivation behind this setup. We will also see how this
method generalises to split reductive groups.

1.1 Definitions and Facts

A brief notational disclaimer: in the book T ∗ is used in root systems to denote
the dual of T , ie. Hom(T,Gm), while in the seminar we have used X•(T ) to
denote the same thing. I will stick to the notation of X•(T ) in root systems to
align with previous talks, although in some contexts (that are not root systems)
the upper star dual notation is used for clarity.

Definition 1. An algebraic group G is solvable if G(Falg) is solvable.

Definition 2. An algebraic group G is semisimple if G is connected, and GFalg

has no nontrivial solvable connected normal subgroups. (Note: in the book, we
require G ̸= 1, which is certainly not simple, but it is in fact semisimple. This
can be seen later when we define semisimplicity in terms of root systems, as
G = 1 has an empty root system which is the sum of precisely 0 irreducible root
systems).

This definition of semisimplicity does in fact reflect the classical case which we
will see soon.

Definition 3. (From now on, “group” means algebraic group). A semisimple
group G called split if it contains a split maximal torus T ⊂ G.

Today we will be focusing on the theory and classification of split semisimple
groups. The splitness of the torus allows us to investigate the structure of T
and G via the theory of diagonalisable groups. Take the adjoint representation
of G on GL(Lie(G)), and restrict it to T . We get
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Lie(G) =
⊕

α∈X•(T )

Vα.

The nonzero weights are called roots of G (with respect to T ).

Definition 4. Given a root system Φ on V , we have two associated lattices, the
root lattice and the weight lattice: Λr is called the root lattice and is the
lattice in V generated by Φ, and Λ is the weight lattice:

Λ := {v ∈ V |⟨α∗, v⟩ ∈ Z∀α ∈ Φ}.

(Λ is dual to the lattice generated by Φ∗ in V ∗).

These lattices will be immensely useful in our classification of split semisimple
groups.

Proposition 1. Letting Φ(G) denote the set of roots of G, we have Φ(G) is a
root system in T ∗ ⊗Z R. Furthermore, Λr ⊂ T ∗ ⊂ Λ (with respect to Φ(G)).

1.2 Central Isogenies

Definition 5. Let G and H be group schemes and f : G → H be a surjective
morphism (this has been defined previously). We say f is a isogeny if ker(f)
is finite. We further say f is central if (ker(f))(R) is central in G(R) for any
R ∈ AlgF .

Isogenies are the “isomorphisms” of group schemes: in fact, before Weil in-
trocuced the terminology of isogenies, such morphisms were in fact called iso-
morphisms despite ker(f) not being necessarily trivial.

I want to detail a couple very nice properties about (central) isogenies. Let
G and G′ be semisimple groups with G′ split, and f : G → G′ be a central
isogeny. Then select a maximal split torus T ′ in G′. Define T := f−1(T ′). Then
T is a maximal split torus in G (so G is split) and the natural map T ′∗ → T ∗

induces an isomorphism Φ(G′)
∼−→ Φ(G).

Let’s look a very important property of isogenies that ties in to the special
types of split groups we mentioned earlier. Let G be a spit semisimple group and
T its split maximal torus. Then the adjoint representation of G has a kernel N
that is a subgroup of T . Because T is split, N is diagonalisable. The restriction
of T ∗ → N∗ has kernel Λr, so N∗ ≃ T ∗/Λr. Further, G := G/N is an adjoint
group (it is the image of the adjoint representation). Finally, when G is simply
connected, we have T ∗ = Λ by definition, so N∗ ≃ Λ/Λr. The important result
now arrives:

Proposition 2. If G′ is any split semisimple group with Φ(G′) ≃ Φ(G), then
G′ ≃ G/K where K is an arbitrary subgroup of N .

We get a correspondence theorem of sorts between split semisimple groups with
isomorphic root systems and certain factor groups of G. This result has a little

2



bit of additional structure in the language of Cartier duals, but we have not
developed this technology so we will not investigate this further. We also have
an immediate consequence of this proposition:

Proposition 3. For any split semisimple group G, there is a simply connected
group G̃ and an adjoint group G so that

G̃
f̃−→ G

f−→ G.

Where f̃ , f are central isogenies. Moreover, f̃ and f are unique up to automor-
phisms: if f̃ , f̃ ′ are two such central isogenies, then there is α ∈ Aut(G̃) so that
f̃ ′ = f̃ ◦ α, and similar for f .

In a sense, we see that for any split semisimple group G, there is a collection
of groups with isomorphic root systems, with the “largest” one being simply
connected and the “smallest” one being adjoint. Effectively, a split semisimple
group G is a split torus combined with some combinatorial data to distinguish
between some lattices. This can be formalised a little bit with the following few
ideas:

Definition 6. Let G and G′ be split semisimple groups. We say G and G′ are
a isomorphic if there is an isomorphism f : Λ(G) → Λ(G′) identifying Λr(G)
and Λr(G

′), and T ∗ and T ′∗.

Proposition 4. Given any root system Φ and additive group Λr ⊂ A ⊂ Λ, there
is a split semisimple group G such that (Φ(G), T ∗) ∼= (Φ, A). Furthermore, there
are only finitely many such A (ie. Λ/Λr is finite).

As a result, a split semisimple group is uniquely determined by the lattices Λ,Λr

and the position of T ∗ between them.

Corollary 1. Every split semisimple group is isomorphic to a factor group of
a simply connected group.

Hopefully some of the motivation for these definitions and approach is clear.
We are about to see how useful these concepts are in the classification of split
semisimple groups.

2 Simple Split Groups

Now that we’ve had a chance to look at some of the motivations and properties
of split semisimple groups, let’s investigate one of the most important results. In
algebra, there are numerous contexts where it is natural to consider semisimple
objects, and a natural question is always: Can we classify simple objects? And
in this context, we have a slightly more specific question: Can we classify simple
objects using tori and combinatorial data? Let’s see!

Definition 7. A split semisimple group G is simple if Φ(G) is irreducible.
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Recall that previously we defined simply connected and adjoint split semisimple
groups. In these specific cases, we have another stronger condition:

Proposition 5. Let G be a split semisimple group that is simply connected or
adjoint. Then there exists split semisimple groups Gi that are simple and satisfy

G =
⊕
i

Gi,Φ(G) =
∑
i

Φ(Gi).

Further, these groups are determined uniquely up to ordering.

In particular, simply connected split semisimple groups are uniquely determined
by their root systems (and the same for adjoint). And since every split semisim-
ple group lies between a simply connected one and an adjoint one, it suffices to
classify the simply connected and adjoint split simple groups. (In fact it suffices
to just classify simply connected simple groups since any split semisimple group
is a factor group of a simply connected one, which decomposes as a sum of
simply connected simple groups.)

2.1 Reductive Groups

Before we go on to classifying split simple groups, we should develop our theory
for reductive groups in the hope of also classifying reductive groups with the
same methods. Forget the definition of reductive groups from last time as we will
use a completely different (but equivalent) definition here (proof of equivalence
is left as an exercise):

Definition 8. We say an algebraic group G is reductive if

1. G is smooth and connected

2. G′ = [G,G] is semisimple

3. Z(G) is diagonalisable

4. f : Z(G)×G′ → G is a central isogeny

In fact, we have f ′ : T ×G′ → G is a central isogeny that commutes with T ↪→
Z(G). Let G be a split reductive group. Recall that we can classify split reduc-
tive groups via a root datum, which is data of the form (R,X•(T ), R∨, X•(T )).
Denote T ′ ⊂ G′ as the split maximal torus in G′. But R = Φ(G′) and we have
the following commutative diagramme:

T ∗

Λr T ′∗ Λ⊂ ⊂

Ultimately we get Λr ↪→ T ∗ → Λ, although the second map may not be injective
in this case. So our classification is almost identical: we still classify our groups
by a diagramme Λr → T ∗ → Λ.
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2.2 Classifications

For the remainder of the talk (unless otherwise specified), “groups” are split
semisimple groups, “simple groups” are split semisimple groups that are simple,
“simply connected groups” are simple groups that are simply connected, and
“adjoint groups” are simple groups that are adjoint. Now that we know what
our irreducible objects look like in this context, we proceed to wonder if we can
classify them. The answer is that we can indeed classify simple groups by Lie
family. We will only discuss types A,B,C,D today. Our general approach for
each case will be as follows:

1. Construct an archetypal example (in the vein of sl2 for type A)

2. Calculate the root system of this example

3. Classify the entire Lie family via our root system

As we discussed earlier, split semisimple groups are effectively tori combined
with some combinatorial data, so at this point we wish to describe the combi-
natorial data that can be associated to certain types of split semisimple groups.

2.2.1 Type A

Fix some n > 0. We begin with Step 1 and create an archetypal group of type
An. As you may expect, we take some F -vector space V of dimension n + 1
and set G := SL(V ). Because V is finite dimensional, we can embed G into
GLn+1(F ). This allows us to move on to Step 2: calculating our root system.
The first and most important step is finding a maximal split torus: we can
embed Fn+1 ↪→ GLn+1(F ) via the diagonal embedding. Then, if we require
fn+1 = 1∏

fi
, then we get an embedding Fn ↪→ G, again via the diagonal

embedding. If we denote the image of this embedding as T , we see T is our
maximal split torus. Then, we want to try to understand what the character
group X•(T )1 looks like. Set

χi(diag(t1, . . . , tn+1)) = ti.

Then X•(T ) looks like

Zn/(e1 + e2 + · · ·+ en+1)Z

Our next step is to find the weight spaces of the adjoint action of T on Lie(G).
Recall that Lie(G) is traceless matrices. The weight subspaces end up being

1. T itself, with the trivial weight

2. F · Eij for 1 ≤ i ̸= j ≤ n+ 1, with weight χi · χ−1
j

1Note: in the book, we use T ∗ (T dual) to denote this
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Thus our root system is {ei − ej |i ̸= j}. Now, remember from earlier that
Λr ⊂ T ∗ ⊂ Λ, and in this case, T ∗ =

∑
Z · ei = Λ, so G is simply connected.

The kernel of the adjoint representation of G is its centre, µn+1. Overall, we
arrive at the following classification:

Theorem 1 (Classification of An). A simply connected group G of type An

is isomorphic to SL(V ) for V a n + 1-dimensional F -vector space. All other
groups are isomorphic to SL(V )/µk where k divides n+ 1.

Remark: PGL(V ) ≃ SL(V )/µn+1 is adjoint.

2.2.2 Type B

We will proceed with our classification of simple groups, albeit with fewer de-
tails for the remaining Lie families. Step 1: Let (V, q) be an F -vector space of
dimension 2n + 1 with a regular quadratic form q. We consider G = O+(V, q)
embedded into GL2n+1(F ). Our maximal torus T is the group of all t =
diag(1, t1, . . . , tn, t

−1
1 . . . , t−1

n ). We define χi(t) = ti and naturally associate
X•(T ) with Zn.

Step 2: We start by calculating Lie(G) ⊂ End(V ), which must satisfy
bq(v, xv) = 0 (bq is the polar form) for any v ∈ V and tr(x) = 0 for x ∈ Lie(G).
Then the weight subspaces of Lie(G) with respect to the adjoint action of T are

1. Diagonal matrices with trivial weight

2. F · (Ei,j+n − Ej,i+n) for 1 ≤ i < j ≤ n with weight χi · χj

3. F · (Ei+n,j − Ej+n,i) for 1 ≤ i < j ≤ n with weight χ−1
i · χ−1

j

4. F · (Ei,j − Ej+n,i+n) for 1 ≤ i ̸= j ≤ n with weight χi · χ−1
j

5. F · (E0,i − 2q(v0)Ei+n,0) for 1 ≤ i ≤ n with weight χ−1
i

6. F · (E0,i+n − 2q(v0)Ei,0) for 1 ≤ i ≤ n with weight χi

Thus, our resulting root system becomes {±ei,±ei ± ej |i > j} ⊂ Rn. O+(V, q)
is simply connected (exercise to listener), and it has a corresponding adjoint
group Spin(V, q). Thus, we arrive at the following classification of Bn:

Theorem 2 (Classification of Bn). Every simple group of type Bn is isomorphic
to O+(V, q) (simply connected) or Spin(V, q) (adjoint) where (V, q) is a F -vector
space of dimension 2n+ 1 with a regular quadratic form q.

2.2.3 Type C

For type C and D I will skip some details and just give a brief overview of
how we apply this method to these cases. Step 1: let V be a F -vector space of
dimension 2n and h a nondegenerate alternating form on V . This allows us to
construct the symplectic group Sp(V, h) embedded into GL2n(F ). Our torus
T = diag(t1, . . . , tn, t

−1
1 , . . . , t−1

n ). Step 2: we have Lie(G) as all x ∈ End(V ) so
that h(xv, u) + h(v, xu) = 0 for any u, v ∈ V . Then our weight subspaces are
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1. Diagonal matrices with trivial weight

2. F · (Ei,j+n + Ej,i+n) for 1 ≤ i < j ≤ n with weight χi · χj

3. F · (Ei+n,j + Ej+n,i) for 1 ≤ i < j ≤ n with weight χ−1
i · χ−1

j

4. F · (Ej+n,i+n − Ei,j) for 1 ≤ i ̸= j ≤ n with weight χi · χ−1
j

5. F · Ei,n+i for 1 ≤ i ≤ n with weight χ2
i

6. F · En+i,i for 1 ≤ i ≤ n with weight χ−2
i

You may notice some similarities here to the characterisation of Bn. The lan-
guage of Langlands duality explains to us that groups of type Bn are Langlands
dual to groups of type Cn, and vice versa. In fact, G is simply connected if and
only if LG is adjoint (and vice versa), so we have dual classifications between
our simply connected Bn groups and adjoint Cn groups, and vice versa. Our
root system is {±2ei,±ei ± ej |i > j}. We arrive at the following classification:

Theorem 3 (Classification of Cn). A split simple group of type Cn is isomorphic
to either Sp(V, h) (simply connected) or PGSp(V, h) (adjoint), where V is an
F -vector space of dimension 2n and h is a nondegenerate alternating form.

2.2.4 Type D

Type D is the most complicated of the classical groups because there can be
several nontrivial subgroups of Λ/Λr. We proceed as before by taking V a
F -vector space of dimension 2n and q a hyperbolic form on q. We consider
G = O+(V, q). The root system becomes {±ei ± ej |i > j}. O+(V, q) is simple
if n ≥ 3 and Λr ⊊ T ∗ ⊊ Λ. The corresponding simply connected group is
Spin(V, q) and the adjoint group is PGO+(V, q). When n is odd these are all,
as Λ/Λr is cyclic, but when n is even, Λ/Λr ≃ (Z/2Z)2 so we have three groups
in between, which correspond to Spin±(V, q). Overall:

Theorem 4 (Classification of Dn). A split simple group of type Dn when
n is odd is isomorphic to either Spin(V, q) (simply connected), O+(V, q), or
PGO+(V, q) (adjoint), where V is an F -vector space of dimension 2n and q is
a hyperbolic form. When n is even, the same previous set are possible, but there
are also Spin±(V, q).
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