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1. Introduction

You may have heard of p-adic numbers. You might know what they are, or you might not. Today,
we will give a brief definition of the p-adic integers in the context of a more general construction called
completion (specifically pro-completion, as opposed to ind-completion).

Problem 1. (Review.) Describe all prime ideals of Z.

Given an ideal p of a ring R, we can form the quotient ring R/p. Recall that an ideal p is prime if and
only if R/p is an integral domain. (This is not that bad to prove by showing that a ring is an integral
domain if and only if (0) is prime, and using ideal transfer.) Also recall that we can square an ideal
p2 = ⟨p · q|p, q ∈ p⟩ (by ⟨. . . ⟩ we mean the ideal generated by these elements). We define pn similarly
(including p0 – what is this?).

Problem 2. Verify that pn is an ideal for any n ≥ 0 and p ⊂ R an ideal.

Problem 3. Show that there is a surjective map R/pn → R/pn−1. Hint: Third Isomorphism Theorem.
What is (R/pn)/(pn−1/pn)?

Let’s work in the integers for now. Since Z is a PID, we will write (n) to denote the ideal generated by
n. Your answer to Problem 1 should help with this problem.

Problem 4. Show that there is a surjective map Z/nZ→ Z/mZ if and only if m|n.

Problem 5. Show that if p = (n), then pk = (nk) for n ∈ Z, k ≥ 0.

1



2

2. Limits

In Problem 3, we proved that the following diagramme forms an inverse system.

R/p← R/p2 ← R/p3 ← . . .

(This is in opposition to a direct system, which would be a diagramme A → B → C → ....) Formally,
an inverse system requires a partially ordered set to be indexed by. In our case, we will use N to index
our inverse system, which is totally ordered under ≤1. We will write fi to denote the surjective map
R/pi → R/pi−1.

With an inverse system, we can take a inverse limit, also known as the projective limit :

lim←−
n

R/pn :=

{
r⃗ ∈

∏
n

R/pn
∣∣∣ f(ri) = ri−1

}
In words, this is a collection of elements, one from each R/pi, that are consistent : that is, if we send the
i-th element through the map, we get the i− 1-th element. Because our maps may not be injective (and
in general will never be, because they are surjective), there are a lot of choices here!

Example 1. Let R = Z and p = (p) for some prime p ̸= 0. Then we write

Zp = Z/p∞Z := lim←−
n

Z/pnZ

This is called the ring of p-adic integers. Let’s describe the elements of this ring. Classically, p-adic integers

are described as sums
∑
0

aip
i, where 0 ≤ ai ≤ p. We can represent this by x0 = a0, x1 = a0 + a1p, . . . .

Clearly given {x0, x1, . . . } we can recover {a0, a1, . . . } and thus
∑
0

aip
i. How else can we describe our

data {x0, x1, . . . }? Well, we can say that xi−1
∼= xi mod pi, since xi−1 + aip

i = xi.

Problem 6. Prove that this description of the p-adic integers agrees with our definition lim←−n
Z/pnZ.

Hint: fi+1 : Z/pi+1Z → Z/piZ is also x 7→ x mod pi, so our data can also be described as collections
{x0, x1, . . . }, with x0 ∈ Z/pZ, x1 ∈ Z/p2Z, . . . (why?) and fi+1(xi) = xi−1.

Problem 7. Let R = R[t], the ring of real-coefficient polynomials in t. Describe lim←−n
R[t]/tnR[t]. Hint:

use a similar approach to the p-adic integers.
R′ = lim←−n

R[t]/tnR[t] is called the t-adic completion of R[t].

1Literally, these are sequential limits because they operate over N. A more general inverse limit can run over any partially
ordered set, and is an example of a cofiltered limit, a limit indexed over a cofiltered category. A filtered category is a
generalisation of a partially ordered set and a cofiltered category is simply the opposite category. We like cofiltered limits
because they work very nicely with finite colimits (and dually filtered colimits work nicely with finite limits).
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3. Profinite Groups

A group is called profinite if it is a projective limit (inverse limit) of finite groups. The classic example
is the p-adic integers.

Problem 8. Is every profinite group infinite? Prove or give a counterexample.

Another important example of profinite groups is Galois groups. Given a field F and a Galois extension
E/F , it is true that Gal(E/F ) is profinite. Let {Fj} be the collection of all fields such that F ⊂ Fj ⊂ E
and Fj/F is finite. Then

Gal(E/F ) = lim←−
j

Gal(Fj/F )

Thus, Gal(E/F ) is profinite, as Fj/F is a finite extension and hence Gal(Fj/F ) is finite. As the last topic
in this short worksheet, we will prove that Gal(E/F ) = lim←−j

Gal(Fj/F ). To do so, we will learn pro-ind

duality.
Fix F a field, and E/K/F extensions with E/F (and thus necessarily E/K and K/F ) finite. The map

K ↪→ F (the “hook” on this arrow meaps the map is injective) induces a map Gal(K/F ) ← Gal(E/F )
(this is the quotient map by the subgroup H ⊂ Gal(E/F ) that fixes K). Notice how the arrow is now
reversed. If we call the map from f : F → K, then we write Gal(f/F ) : Gal(E/F )→ Gal(K/F ).

K E

Gal(K/F ) Gal(E/F )

f

Gal(f/F )

This means that Gal(−/F ) is contravariant : it reverses maps. (It would be “covariant” if it didn’t reverse
maps.)

Consider a (potentially infinite) Galois extension E/F . Let E =
⋃

i Fi, where each Fi/F is finite and
Fi ⊂ Fi+1.

Problem 9. Prove that this is always possible. Hint: you may use without proof that an infinite extension
E/F is Galois if and only if E =

⋃
iEi with Ei/F Galois. Prove that we can order the Ei in the way we

want. The field compositum may help.

Then

Gal(E/F ) = Gal

((⋃
i

Fi

)
/F

)
by definition. We can write F = F0 → F1 → F2 → . . . and fi : Fi → Fi+1, and this forms a direct system.
Thus, we can take a direct limit (also called an injective limit, or inductive limit) lim−→i

Fi =
⊔

i Fi/ ∼,
where a ∼ b if fi(a) = b or fi(b) = a for some i.

In words, lim−→j
Fi is the union of all Fi where we delete duplicates.
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Problem 10. Prove that if all fi are injective, then lim−→j
Fj =

⋃
j Fj .

Now, we have all the pieces we need to finish our proof.

Gal(E/F ) = Gal

⋃
j

Fj

 /F


= Gal((lim−→

j

Fj)/F )

= lim←−
i

Gal(Fi/F )

Using pro-ind duality : because Gal(−/F ) is contravariant, it sends

F0 → F1 → . . .

to

Gal(F0/F )← Gal(F1/F )← . . .

So our direct system becomes an inverse system. We don’t know for sure that Gal sends our direct limit
to an inverse limit though! For a contravariant functor, the property of sending direct limits to inverse
limits is called cocontinuity and is a rather strong condition.

But in this case it is true!2 So our inductive limit (the ind) becomes a projective limit (the pro). So
we’ve proved Gal(E/F ) = lim←−i

Gal(Fi/F ) when E =
⋃

i Fi.

2The Fundamental Theorem of Galois Theory states that subgroups of Gal(E/F ) and subfields K with E/K/F are in

bijection. This is actually an equivalence of categories! The functor in one direction is Gal(−/F ) and in the other way E(−)

(the fixed points functor). These functors form a adjunction, with Gal(−/F ) the left adjoint. It is a general theorem in
category thoery that left adjoints are cocontinuous.
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