Re	v	i	e	w	
00	0				

Sheaves on \mathbb{P}^1 000000 Lots of Homological Algebra 00000000

Geometric Constructions

McKay Correspondence II

Max Steinberg

University of California, Los Angeles

・ロト・西・・田・・田・ とうくの

UCLA

McKay II

Sheaves on \mathbb{P}^1 000000

Lots of Homological Algebra 00000000

Geometric Constructions

Reflection Functors and Coxeter Elements

Briefly, let us recall the tools of reflection functors and Coxeter functors. Let \vec{Q} be a quiver with vertices I, and denote s_r for the simple reflection corresponding to r, for r a simple real root. We have a *Coxeter element* $C = \prod_R s_r$ associated to a choice of ordering of R, our set of simple real roots. We have a *reflection* functor $\Phi_r^{\pm} : \operatorname{Rep}(\vec{Q}) \to \operatorname{Rep}(s_r^{\pm}\vec{Q})$, and define the *Coxeter* functor as $\mathbf{C}^{\pm} = \prod_R \Phi_r^{\pm}$.

Preprojective and Preinjective Representations

Let V be an indecomposable representation of \vec{Q} . We say V is

- 1. preprojective if $(\mathbf{C}^+)^n V = 0, n \gg 0$
- 2. preinjective if $(\mathbf{C}^{-})^{n}V = 0, n \gg 0$
- 3. regular if $(\mathbf{C}^+)^n V \neq 0, n > 0$

(Note that $\mathbf{C}^{\pm}V$ is indecomposable when V is, and $\mathbf{C}^{\pm}V = 0$ iff V is projective, respectively injective.)

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シタペ

Translation Quiver and Slices

Recall that for any quiver Q, we have a quiver $\mathbb{Z} Q$ called the *translation quiver*, defined by $\mathbb{Z} Q := \{(i, n) | p(i) + n \equiv 0 \mod 2\} \subset Q \times \mathbb{Z}$. We will temporarily ignore what p(i) is defined as – when we use our translation quivers, this will be clear.

We say $T \subset \mathbb{Z} Q$ is a *slice* if $\forall i \in I$, $\exists !q = (i, h_i) \in T$ and when i, j are connected by an edge in Q, $h_i = h_j \pm 1$. We previously detailed that given a slice T, we obtain an orientation of Q, denoted by \vec{Q}_T , where $e : i \to j$ if $h_i = h_j + 1$ and $e : j \to i$ if $h_i + 1 = h_j$.

Review 000	Sheaves on \mathbb{P}^1 \bullet 00000	Lots of Homological Algebra 00000000	Geometric Constructions
a .			

Let $G \leq \mathrm{SU}(2)$ be a finite subgroup and Q be the corresponding Euclidean graph we introduced last week. For simplicity assume $-I \in G$, so that $\overline{G} := \pi(G)$ gives us $G = \pi^{-1}(\overline{G})$. Pick some $X \in \mathrm{Rep}(G)$. On X, -I acts as either I or -I: if -Iacts as I, set p(X) := 0, and if -I acts as -I, set p(X) = 1. This introduces a $\mathbb{Z}/2\mathbb{Z}$ grading on $\mathrm{Rep}(G)$: let $\mathrm{Rep}_0(G) := \{X \in \mathrm{Rep}(G) | p(X) = 0\}$ and similar for $\mathrm{Rep}_1(G)$. Then $\mathrm{Rep}(G) = \mathrm{Rep}_0(G) \oplus \mathrm{Rep}_1(G)$. We call p(X) the parity of X.

Setup

	$\begin{array}{ccc} \operatorname{Review} & \operatorname{Sheaves on} \mathbb{P}^1 \\ \circ $	Lots of Homological Algebra	Geometric Constructions
--	---	-----------------------------	-------------------------

Equivariant Sheaves

Let X be a scheme. A G-equivariant coherent sheaf on X is the data of a coherent sheaf \mathcal{F} on X together with an isomorphism $\phi: \sigma^* \mathcal{F} \to p_2^* \mathcal{F}$, where σ is the action map $G \times X \to X$ and p_2 is the projection $G \times X \to X$ that satisfies the cocycle condition:

$$p_{23}^*\phi \circ (1_G \times \sigma)^*\phi = (m \times 1_X)^*\phi$$

where *m* represents multiplication $G \times G \to G$ and the $p_{(-)}$ are the projections in $G \times G \times X$.

Equivariant Sheaves II

Let $\operatorname{Coh}_{G}(\mathbb{P}^{1})$ be the category of *G*-equivariant coherent sheaves on \mathbb{P}^{1} . Similarly, $\operatorname{Coh}_{\overline{G}}(\mathbb{P}^{1})$ is the category of \overline{G} -equivariant coherent sheaves on \mathbb{P}^{1} . We can describe \overline{G} -equivariant sheaves in terms of *G*-equivariant sheaves:

$$\operatorname{Coh}_{\overline{G}}(\mathbb{P}^1) = \{ \mathcal{F} \in \operatorname{Coh}_G(\mathbb{P}^1) | (-I)^* |_{\mathcal{F}} = \operatorname{id} \}$$

Note that for $\mathcal{F} \in \operatorname{Coh}_{G}(\mathbb{P}^{1}), H^{0}(\mathbb{P}^{1}, \mathcal{F}) = \Gamma(\mathcal{F})$ has the natural structure of a *G*-representation.

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シタペ

Review	Sheaves on \mathbb{P}^1	Lots of Homological Algebra	Geometric Constructions
000	000000	00000000	

Example

Example

 $\mathcal{O}(n)$ has a natural structure of a *G*-equivariant sheaf for any $n \in \mathbb{N}$. Since $(-I)^*|_{\mathcal{O}(n)} = (-1)^n$, we see $\mathcal{O}(n)$ is \overline{G} -equivariant iff *n* is even.

When X is a representation of G, $X(n) := X \otimes \mathcal{O}(n)$ is a G-equivariant locally free sheaf, and \overline{G} -equivariant when p(X) + n is even.

Sheaves on \mathbb{P}^1 000000 Lots of Homological Algebra 00000000

 $\begin{array}{c} \operatorname{Geometric} \ \operatorname{Constructions} \\ \circ \circ \circ \circ \circ \circ \circ \circ \end{array}$

Some Homological Facts

Theorem ([Kir16] 8.20) Let $C = \operatorname{Coh}_G(\mathbb{P}^1)$. Then:

- 1. C is hereditary: for any $\mathcal{F}, \mathcal{G} \in \mathcal{C}$, we have $\operatorname{Ext}^{i}(\mathcal{F}, \mathcal{G}) = 0$ for i > 1.
- 2. Serre duality: if \mathcal{F}, \mathcal{G} are locally free, then we have an isomorphism

$$\operatorname{Ext}^{1}_{\mathcal{C}}(\mathcal{F},\mathcal{G}(-2)) = \operatorname{Ext}^{1}_{\mathcal{C}}(\mathcal{F}(2),\mathcal{G}) \simeq \operatorname{Hom}_{\mathcal{C}}(\mathcal{G},\mathcal{F})^{*}.$$

Some Homological Facts II

3. For any locally free sheaf $\mathcal{F} \in \mathcal{C}$, we have a short exact sequence

$$0 \to \mathcal{F} \to \rho \otimes \mathcal{F}(1) \to \Lambda^2 \rho \otimes \mathcal{F}(2) \simeq \mathcal{F}(2) \to 0,$$

where $\rho = \Gamma(\mathcal{O}(1)) \simeq \mathbb{C}^2$ is the standard two-dimensional representation of G. (Note that $\rho \simeq \rho^*$.)

4. Every G-equivariant coherent sheaf admits a resolution which consists of locally free G-equivariant sheaves. Every locally free G equivariant sheaf is a direct sum of sheaves of the form $X \otimes \mathcal{O}(n)$.

Review

Lots of Homological Algebra

Geometric Constructions

Categories of Representations

Let us assign to every vertex q = (i, n) of $\mathbb{Z}Q$ a locally free \overline{G} -equivariant sheaf on \mathbb{P}^1 by

$$X_q = \rho_i \otimes \mathcal{O}(n), \quad q = (i, n), i \in I, n \in \mathbb{Z},$$

where ρ_i is the irreducible representation of G corresponding to $i \in I$. Note that then

$$X_{\tau q} = X_{(i,n-2)} = X_q(-2)$$

Since the edges of Q correspond to morphisms $\rho_i \to \rho_i \otimes \rho$, we get, for every edge $h: i \to j$ in Q, a morphism

$$x_h: X_{(i,n)} = \rho_i \otimes \mathcal{O}(n) \to \rho_j \otimes \rho \otimes \mathcal{O}(n) \to \rho_j \otimes \mathcal{O}(n+1) = X_{(j,n+1)},$$

where the morphism $\rho \otimes \mathcal{O}(n) \to \mathcal{O}(n+1)$ is constructed using the isomorphism $\rho \simeq \Gamma(\mathcal{O}(1))$.

Review	Sheaves on \mathbb{P}^1 000000	Lots of Homological Algebra	Geometric Construct
000		0000000	0000000

Slices

Lemma ([Kir16] 8.21)

Let $T \subset \mathbb{Z}Q$ be a slice. Denote $\mathcal{C} = \operatorname{Coh}_{\bar{G}}(\mathbb{P}^1)$ and let $D^b_{\bar{G}}(\mathbb{P}^1)$ be the corresponding derived category: $D^b_{\bar{G}}(\mathbb{P}^1) = D^b(\mathcal{C})$.

- 1. Sheaves $X_q, q \in T$, generate $D^b_{\bar{G}}(\mathbb{P}^1)$ as a triangulated category: the smallest triangulated subcategory in $D^b_{\bar{G}}(\mathbb{P}^1)$ containing all X_q is $D^b_{\bar{G}}(\mathbb{P}^1)$.
- 2. If $q \in T$, $p \prec T$, then $\operatorname{Hom}_{\mathcal{C}}(X_q, X_p) = 0$. Similarly, if $p \succcurlyeq T$, then $\operatorname{Ext}^1_{\mathcal{C}}(X_q, X_p) = 0$
- 3. If $p, q \in T$, then

$$\operatorname{Hom}_{\mathcal{C}}(X_q, X_p) = \langle paths \ in \ T \ from \ q \ to \ p \rangle,$$
$$\operatorname{Ext}^{1}_{\mathcal{C}}(X_q, X_p) = 0.$$

<ロト < 母 > < 臣 > < 臣 > 三日 の < 0</p>

Review	Sheaves
500	000000

on \mathbb{P}^1

Lots of Homological Algebra 0000000

Geometric Constructions

Slice Functors

Definition (slice functor, [Kir16] 8.22) Let $T = \{(i, h_i)\} \subset \mathbb{Z}Q$ be a slice. We define the functor

$$\Psi_T : \operatorname{Coh}_{\bar{G}}\left(\mathbb{P}^1\right) \to \operatorname{Rep}\left(\vec{Q}_T\right)$$

by

$$\Psi_T(\mathcal{F}) = \bigoplus_{i \in I} \operatorname{Hom}_{\mathcal{C}} \left(X_{(i,h_i)}, \mathcal{F} \right)$$

eview SO	Sheaves 000000	on	\mathbb{P}^1

Lots of Homological Algebra

 $\begin{array}{c} \operatorname{Geometric}\ \operatorname{Constructions}\\ \circ\circ\circ\circ\circ\circ\circ\circ\end{array}$

Slice Functors II

R

and the maps corresponding to edges of \vec{Q}_T are given by

$$\operatorname{Hom}_{\mathcal{C}}\left(X_{(i,h_i)}, \mathcal{F}\right) \to \operatorname{Hom}_{\mathcal{C}}\left(X_{(j,h_j)}, \mathcal{F}\right), \quad h_i = h_j + 1,$$
$$f \mapsto f \circ x_{\tilde{e}}$$

where e is an edge between i and j in Q (and thus an edge $i \to j$ in \vec{Q}_T), $\tilde{e}: (j, h_j) \to (i, h_j + 1)$ is the corresponding edge in $\mathbb{Z}Q$.

Review 000	Sheaves on \mathbb{P}^1 000000	Lots of Homological Algebra	Geometric Constructions

Example

Example ([Kir16] 8.23) Let $\mathcal{F} = X_p, p = (i, h_i) \in T$. Then it follows from the previous lemma that

$$\Psi_T\left(X_p\right) = P(i)$$

is the standard projective representation of \vec{Q}_T we have discussed.

Sheaves on \mathbb{P}^1 000000 Lots of Homological Algebra $_{00000000}$

 $\begin{array}{c} \operatorname{Geometric} \ \operatorname{Constructions} \\ \circ \circ \circ \circ \circ \circ \circ \circ \end{array}$

Important Theorem

Theorem ([Kir16] 8.24)

Let $G \subset SU(2)$ be a finite subgroup containing -I. Let Q be the corresponding Euclidean graph, and let $T \subset \mathbb{Z}Q$ be a slice.

- 1. The functor $\Psi_T : \operatorname{Coh}_{\bar{G}}(\mathbb{P}^1) \to \operatorname{Rep}\left(\vec{Q}_T\right)$ is left exact.
- 2. The derived functor

$$R\Psi_T: D^b_{\bar{G}}\left(\mathbb{P}^1\right) \to D^b\left(\vec{Q}_T\right)$$

is an equivalence of triangulated categories.

Review 000	Sheaves on \mathbb{P}^1 000000	Lots of Homological Algebra 000000€0	Geometric Constructions

Important Theorem II

3. Let T, T' be obtained from each by an elementary sink to source transformation: $T' = s_i^+(T)$. Then the following diagram is commutative:

where $R\Phi_i^+$ is the derived reflection functor.

4. $R\Psi_T$ identifies the derived Coxeter functor $R\mathbf{C}^+: D^b\left(\vec{Q}_T\right) \to D^b\left(\vec{Q}_T\right)$ with the twist functor

$$\mathcal{F} \mapsto \mathcal{F}(-2)$$

on $D^b_{\bar{G}}\left(\mathbb{P}^1\right)$.

(本部) (本語) (本語) (三)

Review 000	Sheaves on \mathbb{P}^1 000000	Lots of Homological Algebra	Geometric Constructions

Corollary

I'm not a massive fan of triangulated categories and I personally think the proof of this theorem is not enlightening on the representation theory side, so I have chosen to omit it.

Corollary ([Kir16] 8.26)

Let $K_{\bar{G}}(\mathbb{P}^1)$ be the K-group of the category $\operatorname{Coh}_{\bar{G}}(\mathbb{P}^1)$ or, equivalently, of the category $D^b_{\bar{G}}(\mathbb{P}^1)$. Then a choice of a slice $T \in \mathbb{Z}Q$ gives an isomorphism $\psi_T : K_{\bar{G}}(\mathbb{P}^1) \to L$, where L is the root lattice of Q. This isomorphism has the following properties:

- 1. $\psi_T(\mathcal{F}(-2)) = C\psi_T(\mathcal{F})$, where C is the Coxeter element in W, adapted to the orientation \vec{Q}_T .
- 2. If $q = (i, h_i) \in T$, then $\psi_T(X_q) = [P(i)]$.
- 3. We have $\langle \delta, \psi(\mathcal{F}) \rangle = rk\mathcal{F}$, where rk is the rank of sheaf \mathcal{F} .

Sheaves on \mathbb{P}^1 000000 Lots of Homological Algebra $_{\rm OOOOOOO}$

Geometric Constructions $\bullet 000000$

Geometric Construction of Representations

Recall that when Q is a tree, every orientation of Q can be obtained from a slice T. Thus, we now have a tool to geometrically construct representations of any Euclidean quiver that is a tree. We can immediately use this tool to find all indecomposable representations if we can classify all indecomposable equivariant sheaves on \mathbb{P}^1 .

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シタペ

Sheaves on \mathbb{P}^1 000000

Classifying Indecomposable Sheaves

Recall that a coherent sheaf \mathcal{F} on a variety X is called a torsion sheaf if its stalk at a generic point is zero. For example, if X is defined over \mathbb{C} , then for any $x \in X$ we have the skyscraper sheaf \mathbb{C}_x whose stalk at x is \mathbb{C} and at all other points is zero. As a module over the structure sheaf \mathcal{O} , it can be defined as $\mathbb{C}_x = \mathcal{O}_X/m_x$, where m_x is the ideal sheaf consisting of functions vanishing at x. More generally, for any $x \in X, n \geq 1$, we can define the sheaf

$$\mathbb{C}_{x,n} = \mathcal{O}_X/m_x^n$$

If x is a nonsingular point on a curve and t is a local coordinate at x, then the stalk of $\mathbb{C}_{x,n}$ at x is isomorphic to $\mathbb{C}[t]/t^n$.

Review 000	Sheaves on \mathbb{P}^1 000000	Lots of Homological Algebra	Geometric Constructions

Lemma

Lemma ([Kir16] 8.27)

Let $x \in \mathbb{P}^1$ and let $\overline{G}_x \subset \overline{G}$ be the stabilizer of x. Let Y be a finite-dimensional representation of \overline{G}_x . Then for any $n \geq 1$, there is a unique \overline{G} -equivariant sheaf $Y_{\overline{G}x,n}$ with the following properties:

- 1. The support of $Y_{\bar{G}x,n}$ is the \bar{G} -orbit of x.
- 2. The stalk of $Y_{\bar{G}x,n}$ at x is $Y \otimes \mathcal{O}/m_x^n$ (as a representation of \bar{G}_x). For n = 1, we will use the shorter notation $Y_{\bar{G}x,1} = Y_{\bar{G}x}$.

We also see that if $n = 1, \Gamma(Y_{\bar{G}x})$ considered as a representation of \bar{G} is the induced representation $\operatorname{Ind}_{\bar{G}_x}^{\bar{G}}(Y)$. In particular, if $x \in \mathbb{P}^1$ has a trivial stabilizer, then $\Gamma(\mathbb{C}_{\bar{G}x})$ is the regular representation of \bar{G} .

Classification of Indecomposable Sheaves

Theorem ([Kir16] 8.29)

- 1. The following is a full list of nonzero indecomposable objects in $\operatorname{Coh}_{\bar{G}}(\mathbb{P}^1)$:
 - 1.1 Locally free sheaves $\rho_i \otimes \mathcal{O}(n), i \in \operatorname{Irr}(G), n \in \mathbb{Z}, p(i) + n \equiv 0$ mod2.
 - 1.2 Torsion sheaves $\mathbb{C}_{\bar{G}x,n}$, where $n > 0, x \in \mathbb{P}^1$ is generic (i.e. has trivial stabilizer in \bar{G}).
 - 1.3 Torsion sheaves $Y_{\bar{G}x,n}$, where $n > 0, x \in \mathbb{P}^1$ has nontrivial stabilizer \bar{G}_x in \bar{G} , and Y is an irreducible representation of \bar{G}_x . (The pair (x, Y) is considered up to the action of \bar{G} .)
- 2. Indecomposable objects of $D^{b}_{\bar{G}}(\mathbb{P}^{1})$ are of the form X[k], where X is an indecomposable object of $\operatorname{Coh}_{\bar{G}}(\mathbb{P}^{1}), k \in \mathbb{Z}$.

Classification of Indecomposable Representations

Combining this with the Important Theorem (8.24), we see that indecomposable objects in Rep \vec{Q} must be of the form $R\Psi_T(X)[n]$, where X is an indecomposable object in C and n is chosen so that $R\Psi_T(X)[n] \in \operatorname{Rep} \vec{Q}$. By Lemma 8.21, for $p \succeq T$, we have $R^{1}\Psi_{T}(X_{p}) = 0$, so $R\Psi_{T}(X_{p}) = \Psi(X_{p}) \in \operatorname{Rep} \vec{Q}$. Similarly, if $p \prec T$, then $\Psi_T(X_p) = 0$, and $R\Psi_T(X_n) = R^1 \Psi_T(X_n) [-1] \in \operatorname{Rep} \vec{Q}[-1],$ so $R\Psi_T(X_n)[1] \in \operatorname{Rep} \vec{Q}$. For an indecomposable torsion sheaf X, it is easy to check using Serre duality that $\operatorname{Ext}^{1}(\mathcal{F}, X) = 0$ for any locally free sheaf \mathcal{F} , so $R^1 \Psi_T(X) = 0$. Thus, $R\Psi_T(\mathcal{F}) = \Psi(\mathcal{F}) \in \operatorname{Rep} \vec{Q}.$

Classification of Indecomposable Representations II

So, we arrive at the following result:

Theorem ([Kir16] 8.30)

In the assumptions of the Important Theorem (8.24), the following is a full list of indecomposable objects in Rep \vec{Q}_T :

- 1. $\Psi_T(\rho_i \otimes \mathcal{O}(n)), (i, n) \succeq T$. These objects are preprojective.
- 2. $R^1 \Psi_T (\rho_i \otimes \mathcal{O}(n)) = R \Psi_T (\rho_i \otimes \mathcal{O}(n)) [1], (i, n) \prec T$. These objects are preinjective.
- 3. $\Psi_T(X)$, where X is an indecomposable \overline{G} -equivariant torsion sheaf on \mathbb{P}^1 described in Theorem 8.29. These objects are regular.

Review 000	Sheaves on \mathbb{P}^1 000000	Lots of Homological Algebra	Geometric Constructions 000000
T	1		

Example

Example

Let $G = \{\pm I\}, \overline{G} = \{1\}$. Then the Important Theorem shows that we have an equivalence of derived categories

$$D^b(\operatorname{Coh} \mathbb{P}^1) \simeq D^b(\operatorname{Rep} K),$$

where K is the Kronecker quiver.

<ロト < 母 > < 臣 > < 臣 > 三日 の < 0</p>

Conclusion

Thank you!

・ロト・日本・山田・山田・山口・2000

McKay II

UCLA

References

[Kir16] Alexander Jr Kirillov. Quiver Representations and Quiver Varieties. American Mathematical Society, 2016.