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Review Sheaves on P1 Lots of Homological Algebra Geometric Constructions

Reflection Functors and Coxeter Elements

Briefly, let us recall the tools of reflection functors and Coxeter
functors. Let Q⃗ be a quiver with vertices I, and denote sr for
the simple reflection corresponding to r, for r a simple real root.
We have a Coxeter element C =

∏
R sr associated to a choice of

ordering of R, our set of simple real roots. We have a reflection
functor Φ±

r : Rep(Q⃗) → Rep(s±r Q⃗), and define the Coxeter
functor as C± =

∏
R Φ±

r .
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Preprojective and Preinjective Representations

Let V be an indecomposable representation of Q⃗. We say V is

1. preprojective if (C+)nV = 0, n≫ 0

2. preinjective if (C−)nV = 0, n≫ 0

3. regular if (C+)nV ̸= 0, n > 0

(Note that C±V is indecomposable when V is, and C±V = 0 iff
V is projective, respectively injective.)
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Translation Quiver and Slices

Recall that for any quiver Q, we have a quiver ZQ called the
translation quiver, defined by ZQ := {(i, n)|p(i) + n ≡ 0
mod 2} ⊂ Q× Z. We will temporarily ignore what p(i) is
defined as – when we use our translation quivers, this will be
clear.
We say T ⊂ ZQ is a slice if ∀i ∈ I, ∃!q = (i, hi) ∈ T and when
i, j are connected by an edge in Q, hi = hj ± 1. We previously
detailed that given a slice T , we obtain an orientation of Q,
denoted by Q⃗T , where e : i→ j if hi = hj + 1 and e : j → i if
hi + 1 = hj .
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Setup

Let G ≤ SU(2) be a finite subgroup and Q be the corresponding
Euclidean graph we introduced last week. For simplicity assume
−I ∈ G, so that G := π(G) gives us G = π−1(G).
Pick some X ∈ Rep(G). On X, −I acts as either I or −I: if −I
acts as I, set p(X) := 0, and if −I acts as −I, set p(X) = 1.
This introduces a Z /2Z grading on Rep(G): let
Rep0(G) := {X ∈ Rep(G)|p(X) = 0} and similar for Rep1(G).
Then Rep(G) = Rep0(G)⊕Rep1(G). We call p(X) the parity of
X.
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Equivariant Sheaves

Let X be a scheme. A G-equivariant coherent sheaf on X is the
data of a coherent sheaf F on X together with an isomorphism
ϕ : σ∗F → p∗2F , where σ is the action map G×X → X and p2
is the projection G×X → X that satisfies the cocycle condition:

p∗23ϕ ◦ (1G × σ)∗ϕ = (m× 1X)∗ϕ

where m represents multiplication G×G→ G and the p(−) are
the projections in G×G×X.
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Equivariant Sheaves II

Let CohG(P1) be the category of G-equivariant coherent sheaves
on P1. Similarly, CohG(P

1) is the category of G-equivariant
coherent sheaves on P1. We can describe G-equivariant sheaves
in terms of G-equivariant sheaves:

CohG(P
1) = {F ∈ CohG(P1)|(−I)∗|F = id}

Note that for F ∈ CohG(P1), H0(P1,F) = Γ(F) has the natural
structure of a G-representation.

McKay II UCLA



Review Sheaves on P1 Lots of Homological Algebra Geometric Constructions

Example

Example

O(n) has a natural structure of a G-equivariant sheaf for any
n ∈ N. Since (−I)∗|O(n) = (−1)n, we see O(n) is G-equivariant
iff n is even.
When X is a representation of G, X(n) := X ⊗O(n) is a
G-equivariant locally free sheaf, and G-equivariant when
p(X) + n is even.
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Some Homological Facts

Theorem ([Kir16] 8.20)

Let C = CohG
(
P1

)
. Then:

1. C is hereditary: for any F ,G ∈ C, we have Exti(F ,G) = 0
for i > 1.

2. Serre duality: if F ,G are locally free, then we have an
isomorphism

Ext1C(F ,G(−2)) = Ext1C(F(2),G) ≃ HomC(G,F)∗.
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Some Homological Facts II

3. For any locally free sheaf F ∈ C, we have a short exact
sequence

0 → F → ρ⊗F(1) → Λ2ρ⊗F(2) ≃ F(2) → 0,

where ρ = Γ(O(1)) ≃ C2 is the standard two-dimensional
representation of G. (Note that ρ ≃ ρ∗.)

4. Every G-equivariant coherent sheaf admits a resolution
which consists of locally free G-equivariant sheaves. Every
locally free G equivariant sheaf is a direct sum of sheaves of
the form X ⊗O(n).
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Categories of Representations

Let us assign to every vertex q = (i, n) of ZQ a locally free
Ḡ-equivariant sheaf on P1 by

Xq = ρi ⊗O(n), q = (i, n), i ∈ I, n ∈ Z,

where ρi is the irreducible representation of G corresponding to
i ∈ I. Note that then

Xτq = X(i,n−2) = Xq(−2)

Since the edges of Q correspond to morphisms ρi → ρj ⊗ ρ, we
get, for every edge h : i→ j in Q, a morphism

xh : X(i,n) = ρi⊗O(n) → ρj⊗ρ⊗O(n) → ρj⊗O(n+1) = X(j,n+1),

where the morphism ρ⊗O(n) → O(n+ 1) is constructed using
the isomorphism ρ ≃ Γ(O(1)).
Thus, the collection of sheaves Xq, q ∈ ZQ, forms a
representation of ZQ (in C).
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Slices

Lemma ([Kir16] 8.21)

Let T ⊂ ZQ be a slice. Denote C = CohḠ
(
P1

)
and let Db

Ḡ

(
P1

)
be the corresponding derived category: Db

Ḡ

(
P1

)
= Db(C).

1. Sheaves Xq, q ∈ T , generate Db
Ḡ

(
P1

)
as a triangulated

category: the smallest triangulated subcategory in Db
Ḡ

(
P1

)
containing all Xq is Db

Ḡ

(
P1

)
.

2. If q ∈ T, p ≺ T , then HomC (Xq, Xp) = 0. Similarly, if
p ≽ T , then Ext1C (Xq, Xp) = 0

3. If p, q ∈ T , then

HomC (Xq, Xp) = ⟨paths in T from q to p⟩,
Ext1C (Xq, Xp) = 0.
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Slice Functors

Definition (slice functor, [Kir16] 8.22)

Let T = {(i, hi)} ⊂ ZQ be a slice. We define the functor

ΨT : CohḠ
(
P1

)
→ Rep

(
Q⃗T

)
by

ΨT (F) =
⊕
i∈I

HomC
(
X(i,hi),F

)
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Slice Functors II

and the maps corresponding to edges of Q⃗T are given by

HomC
(
X(i,hi),F

)
→ HomC

(
X(j,hj),F

)
, hi = hj + 1,

f 7→ f ◦ xẽ
where e is an edge between i and j in Q (and thus an edge i→ j
in Q⃗T ), ẽ : (j, hj) → (i, hj + 1) is the corresponding edge in ZQ.
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Example

Example ([Kir16] 8.23)

Let F = Xp, p = (i, hi) ∈ T . Then it follows from the previous
lemma that

ΨT (Xp) = P (i)

is the standard projective representation of Q⃗T we have
discussed.
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Important Theorem

Theorem ([Kir16] 8.24)

Let G ⊂ SU(2) be a finite subgroup containing −I. Let Q be the
corresponding Euclidean graph, and let T ⊂ ZQ be a slice.

1. The functor ΨT : CohḠ
(
P1

)
→ Rep

(
Q⃗T

)
is left exact.

2. The derived functor

RΨT : Db
Ḡ

(
P1

)
→ Db

(
Q⃗T

)
is an equivalence of triangulated categories.
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Important Theorem II

3. Let T, T ′ be obtained from each by an elementary sink to
source transformation: T ′ = s+i (T ). Then the following
diagram is commutative:

Db(Rep(Q⃗T ′))

CohG(P
1)

Db(Rep(Q⃗T ))

RΨT ′

RΨT

RΦ+
i

where RΦ+
i is the derived reflection functor.

4. RΨT identifies the derived Coxeter functor

RC+ : Db
(
Q⃗T

)
→ Db

(
Q⃗T

)
with the twist functor

F 7→ F(−2)

on Db
Ḡ

(
P1

)
.
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Corollary

I’m not a massive fan of triangulated categories and I
personally think the proof of this theorem is not enlightening on
the representation theory side, so I have chosen to omit it.

Corollary ([Kir16] 8.26)

Let KḠ

(
P1

)
be the K-group of the category CohḠ

(
P1

)
or,

equivalently, of the category Db
Ḡ

(
P1

)
. Then a choice of a slice

T ∈ ZQ gives an isomorphism ψT : KḠ

(
P1

)
→ L, where L is

the root lattice of Q. This isomorphism has the following
properties:

1. ψT (F(−2)) = CψT (F), where C is the Coxeter element in
W , adapted to the orientation Q⃗T .

2. If q = (i, hi) ∈ T , then ψT (Xq) = [P (i)].

3. We have ⟨δ, ψ(F)⟩ = rkF , where rk is the rank of sheaf F .
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Geometric Construction of Representations

Recall that when Q is a tree, every orientation of Q can be
obtained from a slice T . Thus, we now have a tool to
geometrically construct representations of any Euclidean quiver
that is a tree. We can immediately use this tool to find all
indecomposable representations if we can classify all
indecomposable equivariant sheaves on P1.
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Classifying Indecomposable Sheaves

Recall that a coherent sheaf F on a variety X is called a torsion
sheaf if its stalk at a generic point is zero. For example, if X is
defined over C, then for any x ∈ X we have the skyscraper
sheaf Cx whose stalk at x is C and at all other points is zero.
As a module over the structure sheaf O, it can be defined as
Cx = OX/mx, where mx is the ideal sheaf consisting of
functions vanishing at x. More generally, for any x ∈ X,n ≥ 1,
we can define the sheaf

Cx,n = OX/m
n
x

If x is a nonsingular point on a curve and t is a local coordinate
at x, then the stalk of Cx,n at x is isomorphic to C[t]/tn.
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Lemma

Lemma ([Kir16] 8.27)

Let x ∈ P1 and let Ḡx ⊂ Ḡ be the stabilizer of x. Let Y be a
finite-dimensional representation of Ḡx. Then for any n ≥ 1,
there is a unique Ḡ-equivariant sheaf YḠx,n with the following
properties:

1. The support of YḠx,n is the Ḡ-orbit of x.

2. The stalk of YḠx,n at x is Y ⊗O/mn
x (as a representation

of Ḡx). For n = 1, we will use the shorter notation
YḠx,1 = YḠx.

We also see that if n = 1,Γ (YḠx) considered as a representation

of Ḡ is the induced representation IndḠḠx
(Y ). In particular, if

x ∈ P1 has a trivial stabilizer, then Γ (CḠx) is the regular
representation of Ḡ.
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Classification of Indecomposable Sheaves

Theorem ([Kir16] 8.29)

1. The following is a full list of nonzero indecomposable
objects in CohḠ

(
P1

)
:

1.1 Locally free sheaves ρi ⊗O(n), i ∈ Irr(G), n ∈ Z, p(i) + n ≡ 0
mod2.

1.2 Torsion sheaves CḠx,n, where n > 0, x ∈ P1 is generic (i.e.
has trivial stabilizer in Ḡ ).

1.3 Torsion sheaves YḠx,n, where n > 0, x ∈ P1 has nontrivial
stabilizer Ḡx in Ḡ, and Y is an irreducible representation of
Ḡx. (The pair (x, Y ) is considered up to the action of Ḡ.)

2. Indecomposable objects of Db
Ḡ

(
P1

)
are of the form X[k],

where X is an indecomposable object of CohḠ
(
P1

)
, k ∈ Z.
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Classification of Indecomposable Representations

Combining this with the Important Theorem (8.24), we see that
indecomposable objects in Rep Q⃗ must be of the form
RΨT (X)[n], where X is an indecomposable object in C and n is
chosen so that RΨT (X)[n] ∈ Rep Q⃗. By Lemma 8.21, for p ≽ T ,
we have R1ΨT (Xp) = 0, so RΨT (Xp) = Ψ (Xp) ∈ Rep Q⃗.
Similarly, if p ≺ T , then ΨT (Xp) = 0, and

RΨT (Xp) = R1ΨT (Xp) [−1] ∈ Rep Q⃗[−1], so

RΨT (Xp) [1] ∈ Rep Q⃗. For an indecomposable torsion sheaf X,
it is easy to check using Serre duality that Ext1(F , X) = 0 for
any locally free sheaf F , so R1ΨT (X) = 0. Thus,
RΨT (F) = Ψ(F) ∈ Rep Q⃗.
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Classification of Indecomposable Representations II

So, we arrive at the following result:

Theorem ([Kir16] 8.30)

In the assumptions of the Important Theorem (8.24), the
following is a full list of indecomposable objects in Rep Q⃗T :

1. ΨT (ρi ⊗O(n)) , (i, n) ≽ T . These objects are preprojective.

2. R1ΨT (ρi ⊗O(n)) = RΨT (ρi ⊗O(n)) [1], (i, n) ≺ T . These
objects are preinjective.

3. ΨT (X), where X is an indecomposable Ḡ-equivariant
torsion sheaf on P1 described in Theorem 8.29. These
objects are regular.
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Example

Example

Let G = {±I}, Ḡ = {1}. Then the Important Theorem shows
that we have an equivalence of derived categories

Db
(
CohP1

)
≃ Db(RepK),

where K is the Kronecker quiver.
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Conclusion

Thank you!
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