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Setup

Recall that SU(2) is the universal cover of SO(3). In particular,
π : SU(2) ↠ SO(3) is surjective with kernel {±I}. We can
embed cyclic groups into SU(2), eg.

ϕ : Cn → SU(2), k 7→
[
ζk 0
0 ζ−k

]
where ζ is a primitive n-th root of unity. Thus, all cyclic groups
are finite subgroups of SU(2). If n is even, then −I ∈ G, so
π−1(π(G)) = G and π(G) ∼= Cn/2. If n is odd, −I ̸∈ G, so G
cannot be written as π−1(π(G)), and π(G) = G = Cn.
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More Finite Subgroups

In general, we can find finite subgroups of SO(3) by considering
symmetries of spherical polyhedra. Since SO(3) naturally acts
via rotations on S2, it is natural to consider polyhedra, since
their reflectional symmetries are finite subgroups of the group of
spherical rotations, SO(3).
So let X be a convex regular polyhedron in R3. It is well known
that there are five regular convex polyhedra, called Platonic
solids: the tetrahedron, the cube, the octahedron, the
dodecahedron, and the icosahedron. We can describe these
polyhedra via a Schläfli Symbol {p, q}, where p is the number of
sides on each face and q is the number of faces that meet at
each vertex (so, eg., a cube is {4, 3}).
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Converting to the Sphere

Given a convex polyhedron X, we can project X onto the
sphere S2 to obtain a spherical polyhedron. We call a spherical
polyhedron regular if it is the projection of a regular
polyhedron. We also allow {p, 2} to be regular: this is the
spherical polyhedron given by two p-gons attached at every
edge, each of which covers one hemisphere.

Figure: {5, 2}
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Symmetries

Now, let Y be a spherical polyhedron. Clearly the group
Sym(Y ) is a finite group, and since Y is embedded into S2,
Sym(Y ) ⊂ SO(3). So let G = π−1(Sym(Y )). Finite subgroups
of SU(2) of this form are called binary polyhedral groups. We
can classify the binary polyhedral groups:

Figure: [Kir16] 135

This can actually be proven using quaternions as we will briefly
touch on later.
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Classification of Finite Subgroups of SU(2)

Theorem ([Kir16] 8.2)

Every nontrivial finite subgroup of SU(2) is isomorphic to a
cyclic group or a binary polyhedral group.

Corollary ([Kir16] 8.3)

Every finite subgroup of SU(2) is isomorphic to π−1(G) for
some G ⊂ SO(3), or isomorphic to Cn for n odd.
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Barycentric Subdivision

Let X be a regular spherical polyhedron and G be its
corresponding binary polyhedral group. We can perform
barycentric subdivision on X (example below for the binary
icosahedral group) and obtain a triangulation of S2 that is
two-colourable. Each triangle in this triangulation has angles
π
p ,

π
q ,

π
2 (notably this is invariant under p ↔ q, as we would

expect since dual polyhedra have the same symmetries).

Figure: [Kir16] 136, edited by me (that’s why it looks awful)
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Classification, I

Theorem ([Kir16] 8.4)

Let X be a {p, q} regular spherical polyhedron and G ⊂ SU(2) be
the corresponding binary polyhedral group (and G = π(G)). We
consider the spherical triangulation detailed previously.

1. The union of two adjacent spherical triangles is a
fundamental domain for the action of G on S2.

2. There are precisely three G-orbits in P1 ∼= S2 which have
nontrivial stabiliser:

2.1 Centres of faces of X – stabilisers in G are C2p

2.2 Vertices of X – stabilisers in G are C2q

2.3 Midpoints of edges of X – stabilisers in G are C4
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Classification, II

Continued from the previous slide.

Theorem ([Kir16] 8.4)

3. Let ∆ be a triangle in the barycentric subdivision of X with
vertices (v0, v1, v2) ∈ P1 so that v0 is a vertex of X, v1 is a
midpoint of an edge incident to v0, and v2 is the centre of a
face incident to that edge. Let A,B,C be generators of the
stabilisers Gv2 , Gv0 , Gv1 respectively so that π(A) is the
clockwise rotation by 2π

p about v2, similar for B,C. Then

Ap = Bq = C2 = −I, and G is generated by A,B,C.

This is an extremely cumbersome definition that actually offers
a much simpler depiction via quaternions.
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Example

Let BD4n denote the binary dihedral group BD4n = π−1(D2n).
This has Schläfli symbol {p, 2}. The orbits in P1 with nontrivial
stabiliser are:

1. G · 0 = {0,∞}, corresponding to the centres of faces of X –
each stabiliser is isomorphic to C2n

2. G · 1 is an orbit of order n, corresponding to the vertices of
X – each stabiliser is isomorphic to C4

3. G · ζ is an orbit of order n, corresponding to the midpoints
of edges of X – each stabiliser is isomorphic to C4

where ζ is the choice of principal 2n-th root of unity used to
embed D2n into SO(3).
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Presentation of G

Theorem ([Kir16] 8.6)

Let G ⊂ SU(2) be a finite subgroup. If G = Cn, pick any
p, q > 0 so that p+ q = n and set r = 1. If G is a binary
polyhedral group, set p, q so that G has Schläfli symbol {p, q}
and r = 2. Then,

1. G ∼= ⟨A,B,C|Ap = Bq = Cr = ABC⟩.
2. Ai, Bj , Ck, 1 ≤ i ≤ p− 1, 1 ≤ j ≤ q − 1, 1 ≤ k ≤ r − 1 are

representatives for the nonidentity conjugacy classes of G.
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Corollary

Corollary
1
p + 1

q +
1
r > 1.

Proof.
We have a spherical triangle S with angles π

p ,
π
q ,

π
r . The area of

such a triangle is given by π
p + π

q + π
r − π > 0, so dividing

through by π shows 1
p + 1

q +
1
r − 1 > 0.

Define Γ(p, q, r) to be the star quiver : it is constructed by three
branches, each with length p, q, r, meeting at a single point. We
count the joining point in the length of each branch, so when
r = 1, we have only two branches. Very early on, we proved
that if 1

p + 1
q +

1
r > 1, then Γ(p, q, r) is Dynkin.
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Example

Thus, we can directly map finite subgroups G ⊂ SU(2) to
Dynkin graphs. We can prove this is a bijection by appealing to
classifications of both sets of objects. In addition, we can label
each vertex in the following way: in the length p branch, we
label the vertices A,A2, . . . , Ap−1, and similar for the other two
branches.

Figure: [Kir16] 140
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ADE Classification

Theorem ([Kir16] 8.9)

We have a bijection between nontrivial finite subgroups
G ⊂ SU(2) up to conjugation and Dynkin graphs. For every
finite subgroup G, the vertices of the corresponding Dynkin
graph are in bijection with nonidentity conjugacy classes in G.

Figure: [Kir16] 140
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Quaternions

Let G ≤ H be a finite multiplicative subgroup of H. Since norm
is multiplicative, |g| = 1∀g ∈ G since G is finite.
Let H ⊂ H denote the unit-norm quaternions, so that
SU(2) ∼= H. Then clearly every finite subgroup of SU(2)
bijectively corresponds to a finite subgroup of H and by the
above argument, bijectively corresponds to a finite
(multiplicative) subgroup of H.
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Finite Subgroups of Quaternions

In [Cox74], Coxeter provides a classification of all finite
multiplicative subgroups of H using the same geometric tools
we have used, but in the context of quaternions. In particular,

G(p, q, r) ∼= ⟨A,B,C|Ap = Bq = Cr = ABC⟩

is generated as a multiplicative group of quaternions by

A = exp(P · π/p), B = exp(Q · π/q), C = exp(R · π/r)

where P,Q,R are the (unit quaternion) points on the spherical
triangles in the barycentric subdivision (with angle π/p at P ,
π/q at Q, and π/r at R). There is also a connection between
the Cayley graph of G and the McKay quiver of G (to be
defined momentarily).
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Setup

Let G be a finite subgroup of SU(2) and I = Irr(G) be the set
of isomorphism classes of irreducible representations of G. We
denote ρi to be an arbitrary irreducible element of the class i
for every i ∈ I. In particular, ρ0 = C, the trivial representation.
K(G) is the Grothendieck group of Rep(G), a free abelian group
with basis [ρi], i ∈ I. Under the tensor product, it becomes a
commutative ring. It also has a natural symmetric bilinear form
([X], [Y ])0 = dimHomG(X,Y ), satisfying ([ρi], [ρj ])0 = δij .
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Building a Quiver, I

Let ρ be the natural representation of SU(2) on C2 restricted to
G. Since SU(2) is clearly unitary, ρ∗ = ρ. So let
A : K(G) → K(G) be given by A(x) = [ρ] · x. In the [ρi] basis,
A can be represented by a matrix: Aij = dimHomG(ρi, ρ⊗ ρj).
Since ρ∗ = ρ, A is symmetric.
Now, define the bilinear form on K(G)⊗Z R given by
(x, y) = (x, (2−A)y)0. This is symmetric and positive
semidefinite, and has a radical generated by
δ =

∑
dim(ρi)[ρi] ∈ K(G).
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Building a Quiver, II

Theorem ([Kir16] 8.13)

Let G be a nontrivial finite subgroup of SU(2) and Q(G) be a
finite graph with vertices I = Irr(G), and number of edges
between i and j given by Aij. Then Q is a connected Euclidean
graph, ρ0 is the extending vertex, and the class of the regular
representation in K(G) is the generator of the radical of the
Euler form.
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Proof of Theorem

Proof.
The root lattice L(Q) is precisely K(G) and (−,−)Q is precisely
(−,−) we just defined, so it is immediately positive
semidefinite. To see Q is connected, we recall that every
irreducible representation of G is a subrepresentation of ρ⊗n for
some n ≫ 0 (since ρ is clearly faithful). The number of edges
connecting i and j is the multiplicity of ρi in ρj ⊗ ρ⊗n for some
n and we are done.
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McKay’s Theorem

We now arrive at the key point of this talk: McKay’s Theorem.

Theorem (McKay)

The previous construction defines a bijection between nontrivial
finite subgroups G ⊂ SU(2) up to conjugation and connected
Euclidean graphs up to isomorphism other than the Jordan
graph.

McKay Correspondence is traditionally extended via the
correspondence {e} ↔ J , mapping the trivial subgroup to the
Jordan quiver.
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Example

Let G = Cn embedded in SU(2) as we have previously done. G
has n irreducible representations, all of dimension 1 (it is
abelian). The tensor product is given by ρi ⊗ ρj = ρi+j (such
that i+ j is taken modulo n), and ρ ∼= ρ1 ⊕ ρ−1. Thus,
A[ρi] = [ρi+1] + [ρi−1]. This is precisely the incidence matrix of
Ân−1, the Euclidean graph of type An−1 with n vertices.

Figure: [Kir16] 144, full classification of McKay Correspondence
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Proof of McKay’s Theorem?

This theorem can be proven explicitly by simply classifying
Euclidean quivers and finite subgroups of SU(2) (as we have
done), but this is not conceptually interesting. In the case of
Dynkin graphs, we had a similar construction that appeared to
be proven via classification rather than conceptual
understanding. We will see much later in the summer that
these constructions are related through the language of Kleinian
singularities.
Just an interesting note, Dynkin diagrammes of simply-laced
affine (untwisted) Lie algebras are precisely the connected
Euclidean graphs (other than the Jordan quiver) and in this
case we have the Cartan matrix C = 2I −A.
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Can we generalise this?

A natural question might be, “is H the only option?” Going to
smaller R-algebras, R clearly has no interesting finite
multiplicative subgroups, and C has only cyclic groups. What if
we go to larger R-algebras?
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Octonions!

It turns out that there is actually something going on with
octonions. Considering finite subgroups of G2 := AutR(O) (just
as SU(2) ∼= H = AutR(H)), there is some sort of correspondence
going on. Clearly any finite multiplicative subgroup of H is also
a multiplicative subgroup of G2, but as far as I am aware it is
currently unknown what combinatorial relation McKay quivers
of finite subgroups of G2 satisfy.
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Conclusion

Thank you!
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