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1 Introduction

On Friday, Zach introduced us to ∞-adjunctions and some of the formalisms
behind them. Now, we will investigate one of the most useful and important
applications of limits: defining limits and colimits in the∞-setting. Specifically,
we want to be able to take (co)limits valued in an ∞-category A in some ∞-
cosmos K.

1.1 Definitions, First Time

A priori, a lot of what we are about to do looks like we are just writing ∞ in
front of a lot of traditional 1-category theory defintions. In a certain sense we
are, and we will later see that this definition does not generalise exactly how we
want it to, so we will have to refine it later. The true idea of ∞-(co)limits in
an ∞-cosmos is a lot more subtle and requires some clever techniques to define
properly. We will start with the “basic” definitions that lead us to our first
definition of a limit.

Definition 1. (diagram ∞-category)

1. Let K be an∞-cosmos and A ∈ K be an∞-category. Let J be a simplicial
set. Then AJ is the ∞-category of J-shaped diagrams in A.

2. Let K ′ be a cartesian closed ∞-cosmos and A, J ∈ K ′ be ∞-categories.
Then AJ is the ∞-category of J-shaped diagrams in A, and there is
a natural bijection between AJ and functors d : J → A.

We call any element d : 1 → AJ a diagram of shape J in A (or simply a
diagram when J and A are clear).

Quick remark: every ∞-topos is a cartesian closed ∞-cosmos (don’t ask about
this because I don’t know anything about topos theory), and our second def-
inition really amounts to saying AJ is an internal hom in a cartesian closed
∞-cosmos. Both of these definitions induce simplicial bifunctors

SSet×K → K, (J,A) 7→ AJ
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K ×K → K, (J,A) 7→ AJ

The difference between these two types of diagrams is rather technical but in
most standard contexts these are the same (eg. in the ∞-cosmos of quasicat-
egories these are immediately identical and in most cases a diagram indexed
by an ∞-category J is equivalent to the diagram indexed by the quasicategory
inside of J , regarded as a simplicial set). For the rest of this talk a diagram will
be a simplicial set indexed diagram unless otherwise specified. All results can
be transfered to the ∞-category indexed case.

Definition 2. (constant diagram functor) There is a terminal object 1 satisfying
A1 ∼= A for any ∞-category A. Restriction along the unique map ! : J → 1
induces the constant diagram functor ∆ : A→ AJ .

You may recall from traditional 1-category theory that the limit and colimit are
adjoints to the constant diagram functor. This leads us to our first definition of
∞-(co)limits:

Definition 3. (admitting all (co)limits) Let A be an ∞-category and J be a
simplicial set.

1. A admits all limits of shape J if ∆ : A→ AJ admits a right adjoint.

2. A admits all colimits of shape J if ∆ : A→ AJ admits a left adjoint.

AJ

A

limcolim
∆ ⊣⊣

(Using Balmer’s notation for adjunctions). In the∞-cosmos of categories, these
definitions are just the usual limits and colimits from traditional 1-category
theory as we mentioned previously.

Definition 4. ((co)products) Let J be a set and
∐

J 1 be the traditional coprod-
uct of the terminal object 1 indexed by J . Then a limit by diagram J is called
a product and a colimit is called a coproduct.

Lemma 1. Given an ∞-category A, products and coproducts in A also define
products and coproducts in h(A).

Proof. We have AJ ∼=
∏

J A (as an equivalence of ∞-categories) when J is a
set. (We can think of this as Hom(

∐
1, A) ∼=

∏
Hom(1, A) and by construction

Hom(1, A) = A1 ∼= A.) Then since the homotopy category functor preserves
limits, we have

h(AJ) ∼= h

(∏
J

A

)
=
∏
J

h(A) ∼= (hA)J
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So our adjoints descend to the homotopy category

(hA)J

h(AJ)

hA

∼=

limcolim
∆ ⊣⊣

1.2 That Was a Bad Definition

Philosophically, it is a little bit dangerous to get overly attached to the homotopy
category when dealing with these constructions. While the relation we just
detailed holds for (co)products, it does not hold for general (co)limits. For
example, A∆[1] represents the 1-simplices in the underlying quasicategory of A,
and certain cotensors do not descend to the homotopy category properly.

An issue with previous definition on the grounds that the existence of a
certain (co)limit is governed completely by the diagram shape and not the actual
diagram. In traditional 1-category theory, we can see this very often: take for
example a category that does not have all equalisers but has some. Then the
existence of lim(X ⇒ Y ) depends on the choice of X and Y , but with the
previous definition, it never exists! So we would like to generalise our definition
from “all (co)limits of this shape exist” to “the (co)limit of this diagram exists”.

1.3 Definitions, Second Time

In order to define (co)limits of diagrams, we need absolute Kan extensions. You
may have seen this in the traditional 1-categorical setting.

Definition 5. (absolute left lifting) Let C
g−→ A

f←− B be a cospan in a 2-
category. Then an absolute left lifting of g through f is the data of a 1-cell ℓ
and a 2-cell λ:

With the following universal property: every 2-cell on the left factors uniquely
(shown below-right):
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Dually,

Definition 6. (absolute right lifting) Let C
g−→ A

f←− B be a cospan in a 2-
category. Then an absolute right lifting of g through f is the data of a 1-cell
r and a 2-cell ρ:

With the following universal property: every 2-cell on the left factors uniquely
(shown below-right):

For simplicity (and diverging from the source text), we call a diagram a abso-
lute lifting diagram if it is either an absolute left lifting or an absolute right
lifting. Let’s explore some facts and examples of absolute lifing diagrams.

Lemma 2. (Restriction lemma) Absolute lifting diagrams are invariant under
restriction of domain: if (ℓ, λ) is an absolute left lifting of g through f , then
c : X → C gives (ℓc, λc), a lifting of gc through f (and dually for right liftings).

Lemma 3. η : idB ⇒ uf is the unit of f ⊣ u iff (f, η) is an absolute left lifting
of the identity through u. Dually, ϵ : fu ⇒ idA is the counit of f ⊣ u iff (u, ϵ)
is an absolute right lifting of the identity through f .

Recall that our first definition gave us colim ⊣ ∆ ⊣ lim. We would like to use
our new technology to define the (co)limit of an individual diagram.
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By the restriction lemma, we can restrict to any subobject of the ∞-category
of diagrams and maintain the same universality. As a result, we can define the
(co)limit of any family of diagrams:

Definition 7. (limit and colimit) Let d : D → AJ . We call d a family of
diagrams of shape J . Then the colimit of d is an absolute left lifting

where colim d : D → A is a generalised element and η : d ⇒ ∆colim d is a
colimit cone. Dually, the limit of d is an absolute right lifting diagram

where lim d : D → A is a generalised element and ϵ : ∆ lim d ⇒ d is a limit
cone.

As you might expect, when A has all limits of shape J , then any family of
diagrams d : D → AJ has a limit. It is not always true that if every diagram
d : 1 → AJ has a limit that A has all limits of shape J . As an example, as
in traditional 1-category theory, an initial element is the colimit of an empty
diagram.

In the essence of time I won’t talk about split augmented (co)simplicial objects
and geometric realisation, but if there is time I may say a bit about them at
the end.

2 Preservation of Limits and Colimits

2.1 Introduction

Recall in traditional 1-category theory, we say a functor f : A→ B

1. preserves limits if it sends limit cones in A to limit cones in B

2. reflects limits if cones in A that are sent to limit cones in B are limit cones
in A
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3. creates limits if whenever a diagram in A admits a limit in B, there is a
limit cone in A that maps to a cone isomorphic to the limit cone in B

We will use these definitions verbatim for functors of ∞-categories. One of the
most famous results from traditional 1-category theory, and one that I’ve used
many times in 210 homeworks and exams, is that left adjoints preserve colimits
and right adjoints preserve limits. We will prove this in the∞-category context
very shortly.

2.2 Adjoints and Limits

First, we need a lemma about absolute lifting diagrams.

Lemma 4. (composition and cancellation of absolute lifting diagrams) Consider
the following diagram where (r, ρ) is an absolute right lifting of h through f :

C

B

D A

g

f

h

r

s ⇓ σ

⇓ ρ

Then (s, σ) is a right lifting of r through g iff (s, ρ · fσ) is an absolute right
lifting of h through fg.

Now, we can prove right adjoints preserve limits. Left adjoints preserving col-
imits is simply the dual of the following proof.

Proposition 1. Right adjoints preserve limits.

Proof. (Proof sketch, the full proof is given in the text). Let K be an ∞-
cosmos, A,B ∈ K be ∞-categories, and u : A→ B a functor with a left adjoint
f : B → A and counit ϵ : fu ⇒ idA. We want to show that absolute right
liftings below-left are sent to absolute right liftings below-right.

(−)J sends adjunctions to adjunctions and counits to counits, so fJ ⊣ uJ with
counit ϵJ . Then by the previous lemma, the above-right diagram is an absolute
right lifting if and only if the below-left diagram is. We can paste the 2-cell with
the counit, which transposes the cone across the adjunction fJ ⊣ uJ , and we
arrive at the below-center diagram. Then contracting across A = A,AJ = AJ ,
we arrive at a diagram below-right which is an absolute right lifting by the
previous lemma.
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Proposition 2. An equivalence of ∞-categories preserves, reflects, and creates
limits and colimits.

Definition 8. (initial and final functors) A functor k : I → J is final if a
J-shaped cone defines a colimit cone if and only if the restricted I-shaped cone
is a colimit cone, and initial if a J-shaped cone defines a limit cone if and only
if the restricted I-shaped cone is a limit cone.

Proposition 3. Left adjoints are initial and right adjoints are final.

Proposition 4. Fully faithful functors f : A→ B reflect any limits or colimits
that exist in B.

Proofs of all of these propositions are available in the text but I’ve chosen not
to go through them for time.
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